Problem. Use the impossibility of zero-checker (that we proved in class) to prove that no algorithm is possible that, given a program \(p \) that always halts, checks whether this program always computes \(n^2 + 1 \).

Solution. We will prove that if such a checker exists, then we can construct a zero-checker – and we already know that zero-checkers are not possible. Indeed, let us assume that we have an algorithm \(\text{checker}(p) \) that, given a program \(p \) that always halts, checked whether \(\forall n \ (p(n) = n^2 + 1) \). Suppose that we have a program \(q \) that always halts and we want to check whether this program \(q \) always returns 0. To check this, we form the following auxiliary program that always returns \(q(n) + n^2 + 1 \):

\[
\text{public static int aux(int n)}
\{\text{return q(n) + n * n + 1;}
\}
\]

The value \(q(n) + n^2 + 1 \) is always equal to \(n^2 + 1 \) if and only if the value \(q(n) \) is always equal to 0.

Thus, the algorithm \(\text{checker}(q(n) + n^2 + 1) \) that applies \(\text{checker} \) to the above auxiliary program is a zero-checker. However, we have proven that zero-checkers do not exist. This contradiction shows that our assumption – that the desired checkers are possible – leads to a contradiction. Thus, such checkers are not possible. The theorem is proven.