Solution to Problem 4

Problem. Write a Java program corresponding to the following primitive recursive function $f = \sigma(\text{PR}(\sigma(0), \text{mult}(\pi_2^0, \sigma(\pi_1^0))))$. For this function f, what is the value of $f(2)$?

Solution. In general, the expression $h = \text{PR}(f, g)$ corresponding to functions $f(n_1, \ldots, n_k)$ and $g(n_1, \ldots, n_k, m, h)$ defines a function of $k + 1$ variables:

$$ h(n_1, \ldots, n_k, 0) = f(n_1, \ldots, n_k); $$

$$ h(n_1, \ldots, n_k, m + 1) = g(n_1, \ldots, n_k, m, h(n_1, \ldots, n_k, m)). $$

In the general case, f is a function of k variable, and g is a function of $k + 2$ variables.

In our cases, $g = \text{mult}(\pi_2^0, \sigma(\pi_1^0))$ is a function of 2 variables, so $k + 2 = 2$ and thus, $k = 0$. For $k = 0$, the general formulas for primitive recursion take the following form:

$$ h(0) = f(); $$

$$ h(m + 1) = g(m, h(m)). $$

Here, $f() = \sigma(0) = 1$ and

$$ g(m, h) = \text{mult}(\pi_2^0, \sigma(\pi_1^0)) = \text{mult}(h, m + 1) = h \cdot (m + 1). $$

Thus, we have

$$ h(0) = 1; $$

$$ h(m + 1) = h(m) \cdot (m + 1). $$

Primitive recursion is the description of a for-loop. The first line of the primitive recursion describes what is happening before the loop. In Java, the corresponding statement takes the following form:

```
int h = 1;
```

The second line of the primitive recursion describes what happens when we get from the iteration number $i - 1 = m$ to iteration number $i = m + 1$. So, we take

```
h = h * i;
```

The whole code for the PR part takes the form:
int h = 1;
for(int i = 1; i <= m; i++)
 {h = h * i;}

The desired function f is obtained from the PR expression by applying σ. Thus, we have the following Java program for computing the function f:

```java
int h = 1;
for(int i = 1; i <= m; i++)
    {h = h * i;}
h++;
```

Let us trace this Java program on the example of $m = 2$.

- We start with assigning, to the variable h, the value 1.
- Then, we go into the for-loop, and define the new variable i whose value is 1.
- Here, $i = 1 \leq m = 2$, so we go inside the loop, and assign, to the variable h, the new value $h = 1 \cdot 1 = 1$.
- After that, we increase i by 1, so i is now 2.
- Here, $i = 2 \leq m = 2$, so we go inside the loop, and assign, to the variable h, the new value $h = 1 \cdot 2 = 2$.
- After that, we increase i by 1, so i is now 3.
- Here, $i = 3 > m = 2$, so we get out of the loop.
- Finally, we twice increase the value h by 1, getting $h = 3$.

The value 3 is the desired value of the function $f(1, 1, 1)$.

Comment. Instead of tracing the Java program, we can trace the original formulas for primitive recursion, which takes the form

- $h(0) = 1$;

- $h(m + 1) = h(m) \cdot (m + 1)$.

For $m = 0$, we get $h(0)$. For $m = 1$, the second formula leads to

- $h(1) = h(0) \cdot (0 + 1) = 1 \cdot 1 = 1$.

For $m = 1$, we get

- $h(2) = h(1) \cdot (1 + 1) = 1 \cdot 2 = 2$.

Thus, in this case, $h = PR(\ldots) = 2$.

To get the value of the desired function $f = \sigma(PR(\ldots))$, we need to add 1 to the PR expression $PR(\ldots) = 2$, so the final answer is 3.