

Solution to Problem 3

Problem. Prove, from scratch – i.e., using only the definition of the primitive recursive function (and not using any results that we had in class without proving them) – that the function $a / (a \% b)$ is primitive recursive.

Solution. To prove that the desired function is primitive recursive (p.r.), we will show:

- that remainder is p.r., and
- that division is p.r.

1. The remainder function $rem(a, b) = b \% a$ can be represented as follows:

$$rem(a, 0) = 0;$$

$$rem(a, b + 1) = \text{if } (rem(a, b) + 1 < b) \text{ then } (rem(a, b) + 1) \text{ else } 0.$$

To show that this expression is p.r., we need to show:

- that $<$ is p.r., and
- that the if-then-else construction is p.r.

1.1. Let us first show that the relation $r < b$ is p.r. Indeed, the condition $r < b$ is equivalent to $b - r > 0$, where:

- $b - r = b - r$ if $b > r$ and
- $b - r = 0$ otherwise.

So, to prove that $r < b$ is p.r., it is sufficient to prove that the relation $a > 0$ and subtraction $sub(b, r) = b - r$ are p.r.

1.1.1. The relation $a > 0$ can be described as follows:

$$pos(0) = 0$$

$$pos(m + 1) = 1.$$

So, it is p.r.

1.1.2. Subtraction can be represented as

$$sub(b, 0) = b;$$

$$sub(b, r + 1) = sub(b, r) \doteq 1.$$

So, to show that subtraction is p.r., it is sufficient to prove the function $prev(n) = n \doteq 1$ is p.r.

1.1.3. Indeed, the function $prev(n)$ can be represented as follows:

$$prev(0) = 0;$$

$$prev(n + 1) = n.$$

1.2. Let us now show that the if-the-else construction is p.r. Indeed, the if-then-else construction can be represented as

$$if (P(\bar{n})) \text{ then } f(\bar{n}) \text{ else } g(\bar{n}) = P(\bar{n}) \cdot f(\bar{n}) + (1 \doteq P(\bar{n})) \cdot g(\bar{n}).$$

We already know that subtraction are p.r., so to prove that if-then-else construction is p.r., we need to prove that addition and multiplication are p.r.

1.2.1. Addition is p.r. since the function

$$add(a, b) = a + b = a + 1 + \dots + 1 \text{ (b times)}$$

can be represented as

$$add(a, 0) = a;$$

$$add(a, b + 1) = add(a, b) + 1.$$

1.2.2. Multiplication is p.r. since it can be represented as

$$mult(a, b) = a \cdot b = a + \dots + a \text{ (b times),}$$

thus

$$mult(a, 0) = 0;$$

$$mult(a, b + a) = mult(a, b) + a.$$

1.3. So, if-then-else construction is p.r., thus remainder is p.r.

2. Let us now show that division is p.r. Indeed, division $div(a, b) = b / a$ can be represented as follows:

$$div(a, 0) = 0;$$

$$div(a, b + 1) = if (rem(a, b + 1) > 0) \text{ then } div(a, b) \text{ else } (div(a, b) + 1).$$

Here, if-then-else construction, remainder, and $>$ are all p.r., so division is also p.r.

3. Since remainder and division are all p.r., the desired function – which is their composition – is also p.r.