Solution to Problem 5

Problem. Let us define a function to be (A+4n)-primitive recursive ((A+n)-p.r.,
for short) if it can be obtained from 0, o, 7%, and a function a function A(n) +
n (where A(n) is Ackermann’s function) by using composition and primitive
recursion. Prove that there exists a computable function which is not (A + n)-
primitive recursive.

Solution.

First part of the proof. Let us first describe how we can assign, to each
(A+n)-p.r. function, a natural number that we will call this function’s (A+n)-
pr-code. This will be done in several steps.

e By definition, an (A + n)-p.r. function is obtained from 0, o, 7¥, and
A(n) + n by using composition o and primitive recursion PR. Thus,
each such function can be described by an expression containing these
symbols and parentheses (and). For example, addition is described as
PR(0,0 073).

e Symbols 0 and PR are ASCII symbols, which means that they can be

directly typed on a usual computer keyboard. However, symbols o, 7%,
and o are not. To describe them in ASCII, we can use, e.g., WTEX, a lan-
guage specifically designed by renowned computer scientist Donald Knuth
to translate mathematical symbols into ASCIL. In this language, o, 77,

and o are described as follows:
\sigma, \pi“k_i, \circ
Similarly, A(n) + n is described as
A(n)+n

e After we use this translation, we get a sequence of ASCII symbols. For
example, the expression corresponding to addition takes the form

PR(0,\sigma\circ\pi~3_3)

According to ASCII, each ASCII symbol is represented in a computer as a
sequence of 0s and 1s. For example, P is represented as 5014 = 0101 0000,
R is represented as 5214 = 0101 0010, etc., so the expression for addition
takes the form

0101 0000 0101 0010 ...

e Finally, we append 1 in front of the resulting sequence of 0s and 1s, and
interpret the resulting binary sequence as a binary number. For example,
for addition, we will get

1 0101 0000 0101 0010 ...

This number is what we will call an (A+n)-pr-code of the original (A+n)-
p.r. function.

Second part of the proof: an important lemma. To prove our result, we
will need the following lemma:

Lemma. There exists an algorithm that, given a natural number c:
e checks whether c is an (A+n)-pr-code of some (A+ n)-p.r. function, and

e if it is, produced an executable file for computing this function; we will

denote this file by f..

How we can prove this lemma. An (A + n)-pr-code was obtained from the
original expression as follows

expression aTeX ASCIT expression ASCHT binary sequence append 1 (A + n)-pr-code.
Thus, to get back from the (A +n)-pr-code to the original (A +n)-p.r. function,
we need to follow these steps in reverse order:

e First, we strip off the first 1 from the natural binary description of the given
natural number n, i.e., from a description in which we skip all leading Os;
for example, n = 5 is represented as 101, not as 0101. As a result, we get
a binary sequence. This step is not possible only in one case: when n = 0;
in this case, we stop this algorithm and return the answer that n = 0 is
not an (A 4 n)-pr-code of any (A + n)-p.r. function.

e Second, we check whether the resulting binary sequence is indeed a se-
quence of valid ASCII symbols. This is what computers do all the time.

e Third, we use the IATEX compiler to check that the corresponding ASCII
sequence is a valid TEX expression. This is what I TEX compilers do
all the time. If it is a valid BTEX expression, ATEX translates in into a
sequence of mathematical symbols.

¢ Finally, we check whether the resulting sequence of mathematical symbols
is syntactically correct; e.g.,
PR(0,

is not syntactically correct: we have an opening parenthesis but not a
closing one, and there is nothing after the comma. This is what compilers
do all the time. If it is syntactically correct, then we can use the same
ideas that we used before to translate this expression into the Java code:
PR corresponds to the for-loop. etc.

Final step of the proof. Let us now consider the function f(c¢) which is
defined as follows:

e if ¢ is an (A + n)-pr-code of an (A + n)-p.r. function, we return f(c) =

felo)+1;

e otherwise, if ¢ is not an (A 4 n)-pr-code of an (A + n)-p.r. function, we
return f(c) = 0.

Let is prove that this function is computable but not (A+n)-primitive recursive.

Proving that the function f(c) is computable. This proof is straightfor-
ward: we just show how this function can be computed. Suppose that we are
given a natural number ¢. Then, to compute f(c), we do the following:

e First, we apply the algorithm A whose existence is proven by the lemma.
This algorithm either tells us that ¢ is not a (A + n)-pr-code — in which
case we return f(c) = 0 — or generates the file f..

e If ¢ is an (A 4 n)-pr-code, we apply the executable file f. to the number
¢, resulting in the value f.(c), and then add 1 to the result.

This can be described as follows:

“isca (A + n)-pr-code? RAGY apply f. to c J&Q add 1 fc(L);Ll
4 no
0

Proving that the function f(c) is not (A + n)-primitive recursive. We
will prove this by contradiction. Let us assume that the function f(c) is (A+n)-
primitive recursive. Let ¢y denote its (A 4+ n)-pr-code. Then, by definition of
fe as a code that computes the original (A + n)-p.r. function, for every possible
input n, we have

feo(n) = f(n).

In particular, for n = ¢y, we have

feo(co) = f(co)-

On the other hand, by definition of the function f(c), since ¢g is a (4 + n)-pr-
code, we get

flco) = feolco) + 1.

By comparing these two equalities, we conclude that f.,(co) = fe,(co)+1, i.e., if
we subtract fe,(co) from both sides, that 0 = 1. This is clearly a contradiction.

The only assumption that we made to get this contradiction is that the
function f(c) is (A 4+ n)-primitive recursive. Thus, this assumption is wrong,
and the above defined function f(c) is not (A + n)-primitive recursive.

Conclusion. We have come up with a function f(¢) which is computable but
not (A + n)-primitive recursive. Thus, the result is proven.

