

Solution to Problem 7

Problem. Prove that the following function is mu-recursive:

```
int j = a;
while(!(j + b <= c))
{j++;}
```

Solution. According to the general algorithm, first, we write a similar problem, but with a for-loop:

```
int j = a;
for(i = 1; i <= m; i++)
{j++;}
```

This program can be translated into primitive recursion as follows:

$$\begin{aligned} j(a, 0) &= a; \\ j(a, m + 1) &= j(a, m) + 1. \end{aligned}$$

A general primitive recursion defines a function $h(n_1, \dots, n_k, m)$ of $k + 1$ variables. In our case, we have a function of 2 variables, so $k + 1 = 2$ and $k = 1$. For $k = 1$, the general primitive recursion has the form

$$\begin{aligned} j(a, 0) &= f(a); \\ j(a, m + 1) &= g(a, m, j(m)). \end{aligned}$$

Here, $f(a) = a = \pi_1^1$ and $g = \sigma \circ \pi_3^3$, so

$$j(a, m) = PR(\pi_1^1, \sigma \circ \pi_3^3).$$

As the number of iterations, we take the smallest m for which

$$j(a, m) + b \leq c,$$

i.e., $\mu m.(j(a, m) + b \leq c)$. Thus, the desired function F has the form

$$F(a, b, c) = j(a, \mu m.(j(a, m) + b \leq c)).$$