Solution to Problem 11

Problem. In class, we designed a Turing machine for computing 73. Use this
design as a sample to design a Turing machine for computing 73 for tuples of
unary numbers. Trace, step-by-step, on an example, how your Turing machine
works. For example, you can take as input the triple (2,1,1,1). Also, check also
that your code works when one of the numbers is 0, especially when the third
number is 0.

The Turing machine for computing 73 for tuples of unary numbers is based
on the following idea:

first, we place 1 in the very first cell, to make sure that we will know when
to stop when we get back,

then, one by one, we eliminate all the ones from the 1st number,

then, we go to the second number and continue going until we reach the
first blank space after its end,

we need to move the second number closer to the starting cell,

moving a unary number one step to the left means that we erase the last
1, and add a 1 before this number; this will keep the same number of ones,
but we get one step closer to the starting cell of the Turing machine,

so, once we reach the blank space after the second number, we go back
one step, erase the 1 symbol, and start going left,

we go left until we reach the end of the number, i.e., the first blank space,
which we replace by 1,

if directly to the left of the replaced black space is a symbol 1, this means
that we are at the starting cell of the Turing machine, thus we have moved
the number already; now all we need to do is replace this symbol 1 with
blank space and stop,

on the other hand, if directly to the left of the replaced blank space is an
empty cell, this means that we need to again go right and repeat the same
move-one-step-to-the-left procedure.

A special care needs to be taken for a special case when the second component
of the original pair is number 0. In this case, once we erase the 1st number,
there is nothing left to erase, so we simply go back (and replace 1 back to blank
when we reach the starting cell).

This Turing machine has the following main rules:
e start, — — 1, R, eraselst
e eraselst, 1 - — R

e eraselst, — — R, right

e right, 1 - R

e right, — — L, erase

e erase, 1 — —, L, left

o left, 1 - L

o left, — — 1, L, checking
e checking, - — R, right

e checking, 1 — —, halt.

The following three additional rules take care of the case when the second num-
ber is 0:

e erase, — — L, finish
e finish, - —» L

e finish, 1 — —, halt.

Solution. The main idea is that if we have the 3rd and the 4th numbers, then,
before we start moving the 2nd number to the left, we need to erase the third
and the fourth numbers:

e start, — — 1, R, eraselst
e eraselst, 1 - — R

e eraselst, — — R, in2nd
e in2nd, 1 - R

e in2nd, — — R, in3rd

e in3rd, 1 - R

e in3rd, — — L, in4th

e indth, 1 - R

e indth, — — L, erased4th
e erasedth, 1 — — L

e crasedth, — — L, erasedrd
e erasedrd, 1 — — L

e erasedrd, - — L, erase
e right, 1 - R

e right, — — L, erase

e erase, | — —, L, left

o left, 1 - L

e left, — — 1, L, checking
e checking, - — R, right
e checking, 1 — —, halt.
e erase, — — L, finish

e finish, - — L

e finish, 1 — —, halt.

Let us trace this Turing machine for the triple (2,1,1,1):

[ZJ1J1] - Ji]-J1[-J1]-]... start
(P[] -Ji]-J1[-J1[-] eraselst
HENRENRENRENE craselst
(L[J=J1]-JI[-J1[-] eraselst
(T] [[J[1] 1] [1] [... in2nd
[(T] [[[1[_J1] [1] [... in2nd
HERENENREE in3rd
(AT -T-[-Ti]-Ji[-TJt]-] in3rd
(LT -T- T -T2 -T27 -1 indth
(L] -T-[-Ti]-JI[-Tt]-] indth
(T[T [-TiT-Ji]-Ti[-] erasedth

erasedth

erasedrd

erase3rd

erase

left

checking

right

erase

left

checking

right

erase

erase

left

checking

halt

