

Solution to Problem 12

Problem. In class, we described a Turing machine that computes $g(n) = n + 1$ for unary n . In Homework 9, you designed a Turing machine that computes a function $f(n)$ which is equal to $n - 2$ when $n > 2$ and to 0 otherwise – for the case when n is unary.

In class, we described the general algorithm for designing a Turing machine that computes the composition of two functions. The assignment is to use this general algorithm to design a Turing machine that computes the composition $g(f(n))$. Trace, step-by-step, on an example, how your Turing machine works. For example, you can take as input $n = 1$.

Reminder: The Turing machine for computing $g(n) = n + 1$ for a unary input n is based on the following idea:

- we go step-by-step until we find the first blank space,
- then, we replace this blank space with 1 and go back.

This machine has the following rules:

- start, $- \rightarrow R$, working
(we start going to the right)
- working, $1 \rightarrow R$
(we see 1, so we continue going),
- working, $- \rightarrow 1, L$, back
(we see a blank space, so we replace it with 1 and start going back)
- back, $\rightarrow L$
(while we see 1s, we continue going back)
- back, $- \rightarrow$ halt
(once we reach the very first cell, we stop).

The Turing machine for computing $f(n)$ for unary n is based on the following idea:

- we go step-by-step until we find the first blank space,
- then, we go back, replace the last two 1s with blanks, and go back all the way.

We need to take special care of the case when $n < 2$.

Solution. The resulting Turing machine takes the following form:

- start, $- \rightarrow R$, moving₁
- moving₁, $- \rightarrow L$, start₂
- moving₁, $1 \rightarrow R$
- moving₁, $- \rightarrow 1, L$, back₁
- back₁, $1 \rightarrow L$
- back₁, $- \rightarrow start_2$
- start₂, $- \rightarrow R$, working₂
- working₂, $1 \rightarrow R$
- working₂, $- \rightarrow L$, delete1st₂
- delete1st₂, $1 \rightarrow -, L$, delete2nd₂
- delete1st₂, $- \rightarrow halt$
- delete2nd₂, $1 \rightarrow -, L$, back
- back₂, $- \rightarrow halt$
- back₂, $1 \rightarrow L$
- back₂, $- \rightarrow halt$

Let us trace it for $n = 1$:

$\boxed{_ \ 1 \ - \ - \ - \ - \ - \ \dots}$	start
$\boxed{- \ \underline{1} \ - \ - \ - \ - \ - \ \dots}$	moving ₁
$\boxed{- \ 1 \ \underline{_} \ - \ - \ - \ - \ \dots}$	moving ₁
$\boxed{- \ \underline{1} \ 1 \ - \ - \ - \ - \ \dots}$	back ₁
$\boxed{_ \ 1 \ 1 \ - \ - \ - \ - \ \dots}$	back ₁
$\boxed{_ \ 1 \ 1 \ - \ - \ - \ - \ \dots}$	start ₂
$\boxed{- \ \underline{1} \ 1 \ - \ - \ - \ - \ \dots}$	working ₂
$\boxed{- \ 1 \ \underline{1} \ - \ - \ - \ - \ \dots}$	working ₂
$\boxed{- \ 1 \ 1 \ \underline{_} \ - \ - \ - \ \dots}$	working ₂
$\boxed{- \ 1 \ \underline{1} \ - \ - \ - \ - \ \dots}$	delete1st ₂
$\boxed{- \ \underline{1} \ - \ - \ - \ - \ - \ \dots}$	delete2nd ₂
$\boxed{_ \ - \ - \ - \ - \ - \ \dots}$	halt