
Solution to Problem 14

Problem. Sketch an example of a Turing machine for implementing primitive
recursion (i.e., a for-loop), the way we did it in class, on the example of the
following simple for-loop

v = a;

for(int i = 1; i <= b; i++)

{v = v + i;}

No details are required, but any details will give you extra credit.

Solution. In mathematical terms, the above for-loop takes the following form:

v(a, 0) = a;

v(a,m+ 1) = v(a,m) + (m+ 1).

After we rename the function v into h and the parameter a into n1 and, we get
the standard form:

h(n1, 0) = n1;

h(n1,m+ 1) = h(n1,m) + (m+ 1).

In this standard form, we have f(n1) = n1, i.e., f = π1
1 , and g(n1,m, h) =

h+ (m+ 1), i.e., g = sum(π3
3 , σ(π

3
2)).

Let us follow the general scheme for computing primitive recursion. Sup-
pose that we have Turing machines computing the functions f(n1) = n1 and
g(n1,m, h) = h + (m + 1). Let us show how to build a Turing machine that
compute the desired function h = PR(f, g). We start with the state

– n1 – x – . . . start

and we want to end up in the state

– h(n1, x) – . . . halt

This can be done as follows. First, we copy x, add 0, then copy the number
n1, and move the head into the cell right before the second copy of n1:

– n1 – x – x – 0 – n1 – . . .

1



Then, we apply the Turing machine f . Since a Turing machine never goes
beyond the cell where it starts, it will compute the value

h(n1, 0) = f(n1) = n1,

so we will have the following state of the tape:

– n1 – x – x – 0 – h(n1, 0) – . . .

Now, we copy n1 and 0 before h, and get

– n1 – x – x – 0 – n1 – 0 – h(n1, 0) – . . .

Then, we apply the Turing machine for computing the function g, and get
h(n1, 1) = g(n1, 0, h(n1, 0)). So, the tape has the form:

– n1 – x – x – 0 – h(n1, 1) – . . .

After that, we decrease the second copy of x by 1, increase 0 by 1, and get the
following:

– n1 – x – x− 1 – 1 – h(n1, 1) – . . .

and we repeat a similar procedure.
In general, for each m ≤ x, we get the following state of the tape:

– n1 – x – x−m – m – h(n1,m) – . . .

Then, we copy n1 and m before h, and get

– n1 – x – x−m – m – n1 – m – h(n1,m) – . . .

Now, we apply the Turing machine for computing the function g, and get

h(n1,m+ 1) = g(n1,m, h(n1,m)).

So, the tape has the form:

– n1 – n2 – x – x−m – m – h(n1,m+ 1) – . . .

Then, we check whether x − m = 0. If x − m > 0, we decrease x − m by 1,
increase m by 1, and get the following:

2



– n1 – x – x− (m+ 1) – m+ 1 – h(n1,m+ 1) – . . .

and we repeat a similar procedure.
Once we get x−m = 0, i.e., m = x, the state of the tape takes the form

– n1 – x – 0 – x – h(n1, x) – . . .

Here, we have k + 4 = 5 numbers:

� the number n1, and

� four numbers x, 0, x, and h(n1, n2, x).

The desired value h(n1, x) is 5-th out of 5, so we can get it by applying the
Turing machine computing the corresponding projection π5

5 :

– h(n1, x) – . . . halt

This is exactly what we wanted.
In this construction, we use composition, adding 1, subtracting 1, copying,

and projection. We know how to do all this on a Turing machine, so indeed we
can thus build a Turing machine for computing the function PR(f, g).

3


