

Solution to Problem 14

Problem. Sketch an example of a Turing machine for implementing primitive recursion (i.e., a for-loop), the way we did it in class, on the example of the following simple for-loop

```
v = a;
for(int i = 1; i <= b; i++)
    {v = v + i;}
```

No details are required, but any details will give you extra credit.

Solution. In mathematical terms, the above for-loop takes the following form:

$$v(a, 0) = a;$$

$$v(a, m + 1) = v(a, m) + (m + 1).$$

After we rename the function v into h and the parameter a into n_1 and, we get the standard form:

$$h(n_1, 0) = n_1;$$

$$h(n_1, m + 1) = h(n_1, m) + (m + 1).$$

In this standard form, we have $f(n_1) = n_1$, i.e., $f = \pi_1^1$, and $g(n_1, m, h) = h + (m + 1)$, i.e., $g = \text{sum}(\pi_3^3, \sigma(\pi_2^3))$.

Let us follow the general scheme for computing primitive recursion. Suppose that we have Turing machines computing the functions $f(n_1) = n_1$ and $g(n_1, m, h) = h + (m + 1)$. Let us show how to build a Turing machine that compute the desired function $h = PR(f, g)$. We start with the state

\sqsubseteq	n_1	$-$	x	$-$	\dots
---------------	-------	-----	-----	-----	---------

and we want to end up in the state

\sqsubseteq	$h(n_1, x)$	$-$	\dots
---------------	-------------	-----	---------

This can be done as follows. First, we copy x , add 0, then copy the number n_1 , and move the head into the cell right before the second copy of n_1 :

$-$	n_1	$-$	x	$-$	x	$-$	0	\sqsubseteq	n_1	$-$	\dots
-----	-------	-----	-----	-----	-----	-----	-----	---------------	-------	-----	---------

Then, we apply the Turing machine f . Since a Turing machine never goes beyond the cell where it starts, it will compute the value

$$h(n_1, 0) = f(n_1) = n_1,$$

so we will have the following state of the tape:

—	n_1	—	x	—	x	—	0	—	$h(n_1, 0)$	—	...
---	-------	---	-----	---	-----	---	---	---	-------------	---	-----

Now, we copy n_1 and 0 before h , and get

—	n_1	—	x	—	x	—	0	—	n_1	—	0	—	$h(n_1, 0)$	—	...
---	-------	---	-----	---	-----	---	---	---	-------	---	---	---	-------------	---	-----

Then, we apply the Turing machine for computing the function g , and get $h(n_1, 1) = g(n_1, 0, h(n_1, 0))$. So, the tape has the form:

—	n_1	—	x	—	x	—	0	—	$h(n_1, 1)$	—	...
---	-------	---	-----	---	-----	---	---	---	-------------	---	-----

After that, we decrease the second copy of x by 1, increase 0 by 1, and get the following:

—	n_1	—	x	—	$x - 1$	—	1	—	$h(n_1, 1)$	—	...
---	-------	---	-----	---	---------	---	---	---	-------------	---	-----

and we repeat a similar procedure.

In general, for each $m \leq x$, we get the following state of the tape:

—	n_1	—	x	—	$x - m$	—	m	—	$h(n_1, m)$	—	...
---	-------	---	-----	---	---------	---	-----	---	-------------	---	-----

Then, we copy n_1 and m before h , and get

—	n_1	—	x	—	$x - m$	—	m	—	n_1	—	m	—	$h(n_1, m)$	—	...
---	-------	---	-----	---	---------	---	-----	---	-------	---	-----	---	-------------	---	-----

Now, we apply the Turing machine for computing the function g , and get

$$h(n_1, m + 1) = g(n_1, m, h(n_1, m)).$$

So, the tape has the form:

—	n_1	—	n_2	—	x	—	$x - m$	—	m	—	$h(n_1, m + 1)$	—	...
---	-------	---	-------	---	-----	---	---------	---	-----	---	-----------------	---	-----

Then, we check whether $x - m = 0$. If $x - m > 0$, we decrease $x - m$ by 1, increase m by 1, and get the following:

—	n_1	—	x	—	$x - (m + 1)$	—	$m + 1$	—	$h(n_1, m + 1)$	—	...
---	-------	---	-----	---	---------------	---	---------	---	-----------------	---	-----

and we repeat a similar procedure.

Once we get $x - m = 0$, i.e., $m = x$, the state of the tape takes the form

—	n_1	—	x	—	0	—	x	—	$h(n_1, x)$	—	...
---	-------	---	-----	---	---	---	-----	---	-------------	---	-----

Here, we have $k + 4 = 5$ numbers:

- the number n_1 , and
- four numbers $x, 0, x$, and $h(n_1, x)$.

The desired value $h(n_1, x)$ is 5-th out of 5, so we can get it by applying the Turing machine computing the corresponding projection π_5^5 :

—	$h(n_1, x)$	—	...	halt
---	-------------	---	-----	------

This is exactly what we wanted.

In this construction, we use composition, adding 1, subtracting 1, copying, and projection. We know how to do all this on a Turing machine, so indeed we can thus build a Turing machine for computing the function $PR(f, g)$.