

Solution to Problem 15

Problem. Sketch an example of a Turing machine for implementing mu-recursion, the way we did it in class, on the example of a function $\mu m.(m > a)$.

Solution. The given function is a particular case of a general μ -recursion expression

$$f(n_1, \dots, n_k) = \mu m.P(n_1, \dots, n_k, m)$$

corresponding to $k = 1$ and $P(n_1, m) \Leftrightarrow m > n_1$.

Suppose that we have a Turing machine for computing the inequality relation $P(n_1, m)$. According to the general algorithm described in the lecture, we start with the state

$\boxed{_ \ n_1 \ - \ \dots}$ start

and we want to end up in the state

$\boxed{_ \ f(n_1) \ - \ \dots}$ halt

Let us show how this can be done. First, we add 0 after the input, copy the whole tuple $(n_1, 0)$, and move the head before the second copy of n_1 :

$\boxed{_ \ n_1 \ - \ 0 \ \boxed{_ \ n_1 \ - \ 0 \ - \ \dots}}$

Then, we apply the Turing machine computing the function $P(n_1, 0)$. As a result, we get the following state:

$\boxed{_ \ n_1 \ - \ 0 \ \boxed{_ \ P(n_1, 0) \ - \ \dots}}$

If $P(n_1, 0) = 0$ (i.e., if the property $P(n_1, m)$ is false), then we increase 0 by 1, copy the tuple $(n_1, 1)$:

$\boxed{_ \ n_1 \ - \ 1 \ \boxed{_ \ n_1 \ - \ 1 \ - \ \dots}}$

and again apply the Turing machine for computing $P(n_1, m)$, resulting in:

$\boxed{_ \ n_1 \ - \ 1 \ \boxed{_ \ P(n_1, 1) \ - \ \dots}}$

In general, at each iteration, we start with the state

$\boxed{_ \ n_1 \ - \ m \ \boxed{_ \ P(n_1, m) \ - \ \dots}}$

If $P(n_1, m) = 0$ (i.e., to “false”), then we increase m by 1, copy the tuple $(n_1, m + 1)$:

$\boxed{_ \ n_1 \ - \ m + 1 \ \boxed{_ \ n_1 \ - \ m + 1 \ - \ \dots}}$

and again apply the Turing machine for computing $P(n_1, m + 1)$, resulting in:

$\boxed{- \ | \ n_1 \ | \ - \ | \ m + 1 \ | \ \boxed{- \ | \ P(n_1, m + 1) \ | \ -} \ | \ \dots}$

etc.

This continues until we get the first value m for which $P(n_1, m) = 1$ (i.e., “true”). In this case, we get the state

$\boxed{- \ | \ n_1 \ | \ - \ | \ m \ | \ \boxed{- \ | \ 1 \ | \ -} \ | \ \dots}$

Here, the desired value m is 2-nd out of 3, so it can be found if we apply the corresponding projection π_2^3 , resulting in:

$\boxed{\boxed{- \ | \ m \ | \ -} \ | \ \dots} \text{ halt}$

where $m = f(n_1) = \mu m.P(n_1, m)$.

This is exactly what we wanted.