Solution to Problem 16

Problem. Use the impossibility of zero-checker (that we proved in class) to
prove that no algorithm is possible that, given a program p that always halts,

checks whether this program always computes n? — n.

Solution. We will prove that if such a checker exists, then we can construct a
zero-checker — and we already know that zero-checkers are not possible. Indeed,
let us assume that we have an algorithm checker(p) that, given a program p
that always halts, checked whether Vn (p(n) = n? — n). Suppose that we have
a program q that always halts and we want to check whether this program ¢
always returns 0. To check this, we form the following auxiliary program that
always returns q(n) +n? — n:

public static int aux(int n)
{return q(n) + n * n - n;}

The value q(n) + n? — n is always equal to n? — n if and only if the value q(n)
is always equal to O.

Thus, the algorithm checker(q(n)+n?—n) that applies checker to the above
auxiliary program is a zero-checker. However, we have proven that zero-checkers
do not exist. This contradiction shows that our assumption — that the desired
checkers are possible — leads to a contradiction. Thus, such checkers are not
possible. The theorem is proven.



