

Solution to Problem 23

Problem. To solve quartic equations $a \cdot y^4 + b \cdot y^2 + c = 0$, a natural idea is to introduce a new variable $z = y^2$ for which we will have a quadratic equation – an equation that we know how to solve. Describe the resulting reductions in general terms: what is $C(x, y)$, what is $C'(x', y')$, what is U_1 , U_2 , and U_3 .

Solution. Here $x = (a, b, c)$, $C(x, y)$ is the desired property $a \cdot y^4 + b \cdot y^2 + c = 0$. For the problem to which we reduce, we have $x' = (a, b, c)$, $y' = z$, and the property $C'(x', y')$ is $a \cdot z^2 + b \cdot z + c = 0$.

Here, $U_1(a, b, c) = (a, b, c)$, $U_2(y') = \sqrt{y'}$, and $U_3(y) = y^2$.