

Solution to Homework 30

Problem. If we take into account communication time, how fast can you compute

$$1 + \frac{1}{2} + \dots + \frac{1}{n}$$

in parallel?

Solution. According to Section 2 of the corresponding lecture, if we can solve the problem in parallel in time T_{parallel} , then we can also solve it sequentially in time $T_{\text{sequential}} \leq c \cdot T_{\text{parallel}}^4$. For computing the above sum, the smallest possible time is $2n - 2$: we need $n - 1$ divisions and $n - 1$ additions. Thus, $2n - 2 \leq c \cdot T_{\text{parallel}}^4$. Dividing both sides by c , we get $c^{-1} \cdot (2n - 2) \leq T_{\text{parallel}}^4$, hence

$$T_{\text{parallel}} \geq C \cdot (2n - 2)^{1/4} = C \cdot \sqrt[4]{2n - 2}.$$

This is faster than the sequential time $2n - 2$, but much slower than the time $\text{const} \cdot \log(n)$ that we would have if we ignored communication time.