

Solution to Homework 31

Problem. Suppose that we have a probabilistic algorithm that gives a correct answer $3/4$ of the time. How many times do we need to repeat this algorithm to make sure that the probability of a false answer does not exceed 5%? Give an example of a probabilistic algorithm. Why do we need probabilistic algorithms in the first place?

Solution. According to the lecture, if after one iteration, the probability of error is p_0 , then after k iterations, the probability of error is p_0^k . In our case, $p_0 = 1 - \frac{3}{4} = \frac{1}{4}$, so the probability of an error after k iterations is $\left(\frac{1}{4}\right)^k = \frac{1}{4^k}$.

We want to find the smallest value k for which $\frac{1}{4^k} \leq 5\% = \frac{1}{20}$. The function $1/x$ is decreasing for $x > 0$, thus the desired inequality is equivalent to $4^k \geq 20$.

Here, $4^1 = 2$, $4^2 = 16$ are smaller than 20, but $4^3 = 64$ is already larger than 20. So, the answer is that we need to repeat this algorithm $k = 3$ times.

Example of a probabilistic algorithm can be taken from the lecture: to check whether two functions $f(x)$ and $g(x)$ are identical, we compare the values $f(r_i)$ and $g(r_i)$ of these two functions at one or more random points r_1, \dots, r_k .

- If at least for one of the random numbers r_i , we get $f(r_i) \neq g(r_i)$, we conclude that the two given functions are different.
- If $f(r_i) = g(r_i)$ for all $i = 1, \dots, k$, then we conclude that the functions $f(x)$ and $g(x)$ are most probably identical – but we understand that they may still be different.

Why do we need probabilistic algorithms? Many problems are NP-complete, meaning that no feasible algorithm is possible that solves all the instances of such a problem. Since we cannot have a solution that works always, a natural next idea is to have a solution that works with some high probability.