
Solution to Homework 35

Problem. Similar to what we did in the class, illustrate the general algorithm of
reducing NP problems to satisfiability on the example of the following problem:

� given a bit x,

� find a bit y for which the following formula is true: ¬x ∨ ¬y.

Solution.

Computational device for checking the desired property. In accordance
with the above proof, we need to start with a computational device that, given
x and y, checks whether x∨¬y is true. In the beginning, we have two cells: an
x-cell that contains the input bit x and a y-cell which contains the bit y.

We also need a wire to transmit the information. We will thus send the
content of the y-cell to the x-cell, and then use the x-cell to compare its original
content with what is send by wire. Once the y-signal is sent, we no longer need
it, so we can simply erase it (i.e., replace it with 0).

The whole computation process takes 3 moments of time:

� at moment t = 1, the x-cell contains x, the y-cell contains y, and the wire
is inactive;

� at moment t = 2, the x-cell still contains x, the y-cell now contains 0, and
the wire transmits the y signal;

� at moment t = 3, the x-cell contains 1 if ¬x ∨ ¬y and 0 otherwise, the
y-cell contains 0, and the wire is again inactive.

Similarly to the example from the lecture, in this computation process, we have
3 cells: the x-cell, the y-cell, and the wire. The x-cell has 2 possible states: 0
and 1, so one bit is sufficient to describe its state. According to the general
notation, we will denote the state of this bit at moment t by s1,1,t. Similarly,
to describe the state of the y-cell, we need one bit s2,1,t.

The wire can be in 3 possible states: inactive, sending 0, and sending 1.
Thus, to describe the state of the wire, we will need 2 bits. Let the first bit
describe whether the wire is active or not, and the second bit describe the signal
sent via an active wire. So, the state S3 of the wire is either 00 (inactive), or 10
(sending 0), or 11 (sending 1).

In this case, S = 3, and the number of bits B needed to describe the state
of each of the cells is B = 2.

1



Corresponding dynamics of states. Let us describe the above computations
in terms of changing states.

At the first moment of time, the wire is inactive: s3,1,1 = s3,2,1 = 0.
At the second moment of time, the first cell retains its state, i.e., s1,1,2 =

s1,1,1. The second cell becomes 0: s2,1,2 = 0. The wire becomes active: s3,1,2 =
1, and the signal it transmits is exactly the bit originally stored in the y-cell:
s3,2,2 = s2,1,1.

At the third moment of time, the x-cell gets the value 1 if the property x∨¬y
is true, where:

� x is the same initial x-state (since we did not change it), i.e., x = s1,1,2,
and

� y is the state passed through the wire, i.e., y = s3,2,2.

Thus, s1,1,3 = 1 ⇔ (¬s1,1,2 ∨¬s3,2,2). The y-cell still contains 0: s2,1,3 = 0, and
the wire is again inactive: s3,1,3 = s3,2,3 = 0.

Describing the dynamics in CNF terms. The above formulas have the
form a = 0, etc., for some variables a. So, to describe the above formulas in
the CNF terms, we need to translate the following general formulas into CNF:
a = 0, a = 1, a = b, and a = 1 ⇔ (b ∨ ¬c). Once we do that, we will be able to
translate specific formulas by plugging the specific name of the variable a into
the corresponding CNF formula.

We already know, from the example presented in the handout, that:

� the CNF form of the formula a = 0 is ¬a;

� the CNF form of the formula a = 1 is a; and

� the CNF form of the formula a = b is (a ∨ ¬b)& (¬a ∨ b).

Let us use the general algorithm to translate the remaining formula a = 1 ⇔
(¬b ∨ ¬c) into CNF.

Translating a = 1 ⇔ (¬b∨¬c) into CNF. For the formula a = 1 ⇔ (¬b∨¬c),
the truth tables for formula F itself and for its negation ¬F take the form

a b c F ¬F
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1

2



The corresponding DNF form for ¬F is

(¬a&¬b&¬c) ∨ (¬a&¬b& c) ∨ (¬a& b&¬c) ∨ (a& b& c),

so its negation F takes the CNF form

(a ∨ b ∨ c)& (a ∨ b ∨ ¬c)& (a ∨ ¬b ∨ c)& (¬a ∨ ¬b ∨ ¬c).

This means that the formula s1,1,3 = 1 ⇔ (¬s1,1,2 &¬s3,2,2) takes the form

(s1,1,3 ∨ s1,1,2 ∨ s3,2,2)& (s1,1,3 ∨ s1,1,2 ∨ ¬s3,2,2)&

(s1,1,3 ∨ ¬s1,1,2 ∨ s3,2,2)& (¬s1,1,3 ∨ ¬s1,1,2 ∨ ¬s3,2,2).

The resulting long formula. The resulting formula should include:

� the CNF forms of all the formulas describing the state’s dynamics,

� the fact that the initial value x is given; for example, for x = 0, it should
be s1,1,1 = 0, i.e., ¬s1,1,1; and

� the fact that the result of checking the property C(x, y) is “true”; ac-
cording to our computation scheme, this result is stored in the x-cell at
moment 3, so this requirement takes the form s1,1,3 = 1, i.e., in CNF form,
as s1,1,3.

Thus, the corresponding long formula takes the following form:

¬s3,1,1 &¬s3,2,1 &

(s1,1,2 ∨ ¬s1,1,1)& (¬s1,1,2 ∨ s1,1,1)&

¬s2,1,2 & s3,1,2 &

(s3,2,2 ∨ ¬s2,1,1)& (¬s3,2,2 ∨ s2,1,1)&

(s1,1,3 ∨ ¬s1,1,2 ∨ s3,2,2)& (s1,1,3 ∨ s1,1,2 ∨ s3,2,2)&

(s1,1,3 ∨ s1,1,2 ∨ s3,2,2)& (s1,1,3 ∨ s1,1,2 ∨ ¬s3,2,2)&

(s1,1,3 ∨ ¬s1,1,2 ∨ s3,2,2)& (¬s1,1,3 ∨ ¬s1,1,2 ∨ ¬s3,2,2)&

¬s1,1,1 & s1,1,3.

This formula says that for given x = 0 and for some y, we performed the
checking of the property C(x, y) ≡ (x ∨ ¬y) and concluded that the result of
checking is “true”. Once the formula is satisfied, we can find y as the original
value of the y-cell, i.e., as y = s2,1,1.

3


