

Solution to Homework 35

Problem. Similar to what we did in the class, illustrate the general algorithm of reducing NP problems to satisfiability on the example of the following problem:

- given a bit x ,
- find a bit y for which the following formula is true: $\neg x \vee \neg y$.

Solution.

Computational device for checking the desired property. In accordance with the above proof, we need to start with a computational device that, given x and y , checks whether $x \vee \neg y$ is true. In the beginning, we have two cells: an x -cell that contains the input bit x and a y -cell which contains the bit y .

We also need a wire to transmit the information. We will thus send the content of the y -cell to the x -cell, and then use the x -cell to compare its original content with what is send by wire. Once the y -signal is sent, we no longer need it, so we can simply erase it (i.e., replace it with 0).

The whole computation process takes 3 moments of time:

- at moment $t = 1$, the x -cell contains x , the y -cell contains y , and the wire is inactive;
- at moment $t = 2$, the x -cell still contains x , the y -cell now contains 0, and the wire transmits the y signal;
- at moment $t = 3$, the x -cell contains 1 if $\neg x \vee \neg y$ and 0 otherwise, the y -cell contains 0, and the wire is again inactive.

Similarly to the example from the lecture, in this computation process, we have 3 cells: the x -cell, the y -cell, and the wire. The x -cell has 2 possible states: 0 and 1, so one bit is sufficient to describe its state. According to the general notation, we will denote the state of this bit at moment t by $s_{1,1,t}$. Similarly, to describe the state of the y -cell, we need one bit $s_{2,1,t}$.

The wire can be in 3 possible states: inactive, sending 0, and sending 1. Thus, to describe the state of the wire, we will need 2 bits. Let the first bit describe whether the wire is active or not, and the second bit describe the signal sent via an active wire. So, the state S_3 of the wire is either 00 (inactive), or 10 (sending 0), or 11 (sending 1).

In this case, $S = 3$, and the number of bits B needed to describe the state of each of the cells is $B = 2$.

Corresponding dynamics of states. Let us describe the above computations in terms of changing states.

At the first moment of time, the wire is inactive: $s_{3,1,1} = s_{3,2,1} = 0$.

At the second moment of time, the first cell retains its state, i.e., $s_{1,1,2} = s_{1,1,1}$. The second cell becomes 0: $s_{2,1,2} = 0$. The wire becomes active: $s_{3,1,2} = 1$, and the signal it transmits is exactly the bit originally stored in the y -cell: $s_{3,2,2} = s_{2,1,1}$.

At the third moment of time, the x -cell gets the value 1 if the property $x \vee \neg y$ is true, where:

- x is the same initial x -state (since we did not change it), i.e., $x = s_{1,1,2}$, and
- y is the state passed through the wire, i.e., $y = s_{3,2,2}$.

Thus, $s_{1,1,3} = 1 \Leftrightarrow (\neg s_{1,1,2} \vee \neg s_{3,2,2})$. The y -cell still contains 0: $s_{2,1,3} = 0$, and the wire is again inactive: $s_{3,1,3} = s_{3,2,3} = 0$.

Describing the dynamics in CNF terms. The above formulas have the form $a = 0$, etc., for some variables a . So, to describe the above formulas in the CNF terms, we need to translate the following general formulas into CNF: $a = 0$, $a = 1$, $a = b$, and $a = 1 \Leftrightarrow (b \vee \neg c)$. Once we do that, we will be able to translate specific formulas by plugging the specific name of the variable a into the corresponding CNF formula.

We already know, from the example presented in the handout, that:

- the CNF form of the formula $a = 0$ is $\neg a$;
- the CNF form of the formula $a = 1$ is a ; and
- the CNF form of the formula $a = b$ is $(a \vee \neg b) \& (\neg a \vee b)$.

Let us use the general algorithm to translate the remaining formula $a = 1 \Leftrightarrow (\neg b \vee \neg c)$ into CNF.

Translating $a = 1 \Leftrightarrow (\neg b \vee \neg c)$ into CNF. For the formula $a = 1 \Leftrightarrow (\neg b \vee \neg c)$, the truth tables for formula F itself and for its negation $\neg F$ take the form

a	b	c	F	$\neg F$
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1

The corresponding DNF form for $\neg F$ is

$$(\neg a \& \neg b \& \neg c) \vee (\neg a \& \neg b \& c) \vee (\neg a \& b \& \neg c) \vee (a \& b \& c),$$

so its negation F takes the CNF form

$$(a \vee b \vee c) \& (a \vee b \vee \neg c) \& (a \vee \neg b \vee c) \& (\neg a \vee \neg b \vee \neg c).$$

This means that the formula $s_{1,1,3} = 1 \Leftrightarrow (\neg s_{1,1,2} \& \neg s_{3,2,2})$ takes the form

$$(s_{1,1,3} \vee s_{1,1,2} \vee s_{3,2,2}) \& (s_{1,1,3} \vee s_{1,1,2} \vee \neg s_{3,2,2}) \& \\ (s_{1,1,3} \vee \neg s_{1,1,2} \vee s_{3,2,2}) \& (\neg s_{1,1,3} \vee \neg s_{1,1,2} \vee \neg s_{3,2,2}).$$

The resulting long formula. The resulting formula should include:

- the CNF forms of all the formulas describing the state's dynamics,
- the fact that the initial value x is given; for example, for $x = 0$, it should be $s_{1,1,1} = 0$, i.e., $\neg s_{1,1,1}$; and
- the fact that the result of checking the property $C(x, y)$ is “true”; according to our computation scheme, this result is stored in the x -cell at moment 3, so this requirement takes the form $s_{1,1,3} = 1$, i.e., in CNF form, as $s_{1,1,3}$.

Thus, the corresponding long formula takes the following form:

$$\begin{aligned} & \neg s_{3,1,1} \& \neg s_{3,2,1} \& \\ & (s_{1,1,2} \vee \neg s_{1,1,1}) \& (\neg s_{1,1,2} \vee s_{1,1,1}) \& \\ & \neg s_{2,1,2} \& s_{3,1,2} \& \\ & (s_{3,2,2} \vee \neg s_{2,1,1}) \& (\neg s_{3,2,2} \vee s_{2,1,1}) \& \\ & (s_{1,1,3} \vee \neg s_{1,1,2} \vee s_{3,2,2}) \& (s_{1,1,3} \vee s_{1,1,2} \vee s_{3,2,2}) \& \\ & (s_{1,1,3} \vee s_{1,1,2} \vee s_{3,2,2}) \& (s_{1,1,3} \vee s_{1,1,2} \vee \neg s_{3,2,2}) \& \\ & (s_{1,1,3} \vee \neg s_{1,1,2} \vee s_{3,2,2}) \& (\neg s_{1,1,3} \vee \neg s_{1,1,2} \vee \neg s_{3,2,2}) \& \\ & \neg s_{1,1,1} \& s_{1,1,3}. \end{aligned}$$

This formula says that for given $x = 0$ and for some y , we performed the checking of the property $C(x, y) \equiv (x \vee \neg y)$ and concluded that the result of checking is “true”. Once the formula is satisfied, we can find y as the original value of the y -cell, i.e., as $y = s_{2,1,1}$.