

Solution to Homework 37

Problem. What class of polynomial hierarchy contains $\Pi_2 P^{\Sigma_2 P}$? Explain your answer.

Solution. For each oracle A , the class $\Pi_2 P^A$ is described by formulas F with 2 quantifiers starting with the universal quantifier in which the main property is feasible with respect to A :

$$F \equiv \forall x_1 \exists x_2 C^A(x_1, x_2, x). \quad (1)$$

Here, the fact that $C^{\Sigma_2 P}$ is feasible with respect to the corresponding oracle $A = \Sigma_2 P$ means that this property, in its turn, has the form

$$\begin{aligned} C^A(x_1, x_2, x) &= C^{\Sigma_2 P}(x_1, x_2, x) \equiv \\ &\exists x_3 \forall x_4 C(x_1, x_2, x_3, x_4, x), \end{aligned} \quad (2)$$

where the property $C(x_1, x_2, x_3, x_4, x)$ is actually feasible.

Substituting the formula (2) into the expression (1), we get

$$F \equiv \forall x_1 \exists x_2 \exists x_3 \forall x_4 C(x_1, x_2, x_3, x_4, x). \quad (3)$$

As we know, the two identical neighboring quantifiers can be combined into one, so we have

$$F \equiv \forall x_1 \exists x_{23} \forall x_4 C(x_1, x_2, x_3, x_4, x). \quad (4)$$

In this expression, we have 3 quantifiers, the first of which is the universal quantifier. Thus, this formula belongs to the class $\Pi_3 P$, i.e.:

$$\Pi_2 P^{\Sigma_2 P} \subseteq \Pi_3 P.$$