Test 1, Theory of Computations, Spring 2025

Problem 1. Translate, step-by-step, the following for-loop into a primitive
recursive expression:

int x = a + b;
for (dnt i = 1; i <= ¢; i++)
{x = x * c;}

You can use sum(.,.) and mult(., .) (product) in this expression.

Problem 2. Translate, step-by-step, the following primitive recursive function
into a for-loop:
F = o(PR(mult(n3, 73), sum(r2, 73))).

For this function F, what is the value F'(2,0,1,1)?

Problem 3-4. Prove, from scratch, that the function f(b,n) = n!/b™ is primi-
tive recursive, where n! stands for the factorial of n, i.e., for the product 1-2-...-n.
Start with the definitions of a primitive recursive function, and use only this
definition in your proof — do not simply mention results that we proved in class,
prove them.

Problem 5. Prove that the following function f(b,n) is p-recursive: f(b,n) =
n!/b™ when n < 3, and f(b,n) is undefined for all other n. You can use the fact
that division and power are primitive recursive.

Problem 6. Translate the following p-recursive expression into a while-loop:

f(b) = pn.(nl/b"™ > 1).

For this function f, what is the value of f(1)? f(2)? Take into account that
0! =1 and b° = 1 for all b.

Problem 7-8. What if, in addition to 0, 7, and o, we also allow the function
A(A(n)) in our constructions? Let us call functions that can be obtained from 0,
k d A A . oy . . o . . AA_ . oy .
7y, o, and A(A(n)) by using composition and primitive recursion primitive
recursive functions. Will then every computable function be AA-primitive re-

cursive? Prove that your answer is correct.

Turn over, please



Problem 9. Design a Turing machine for computing negation f(n) = —n in
unary code: f(0) =1 and f(n) =0 for all n > 0. In other words:

e if the first symbol after the initial blank space is 1, we need to erase the
number and go back;

e if the first symbol after the initial blank space is empty, then we need to
place 1 there and go back.

Trace your Turing machine for n = 1.



