
Test 1, Theory of Computations, Spring 2025

Problem 1. Translate, step-by-step, the following for-loop into a primitive
recursive expression:

int x = a + b;

for (int i = 1; i <= c; i++)

{x = x * c;}

You can use sum(.,.) and mult(., .) (product) in this expression.

Problem 2. Translate, step-by-step, the following primitive recursive function
into a for-loop:

F = σ(PR(mult(π3
1 , π

3
2), sum(π5

5 , π
5
2))).

For this function F , what is the value F (2, 0, 1, 1)?

Problem 3-4. Prove, from scratch, that the function f(b, n) = n!/bn is primi-
tive recursive, where n! stands for the factorial of n, i.e., for the product 1·2·. . .·n.
Start with the definitions of a primitive recursive function, and use only this
definition in your proof – do not simply mention results that we proved in class,
prove them.

Problem 5. Prove that the following function f(b, n) is µ-recursive: f(b, n) =
n!/bn when n ≤ 3, and f(b, n) is undefined for all other n. You can use the fact
that division and power are primitive recursive.

Problem 6. Translate the following µ-recursive expression into a while-loop:

f(b) = µn.(n!/bn > 1).

For this function f , what is the value of f(1)? f(2)? Take into account that
0! = 1 and b0 = 1 for all b.

Problem 7-8. What if, in addition to 0, πk
i , and σ, we also allow the function

A(A(n)) in our constructions? Let us call functions that can be obtained from 0,
πk
i , σ, and A(A(n)) by using composition and primitive recursion AA-primitive

recursive functions. Will then every computable function be AA-primitive re-
cursive? Prove that your answer is correct.

Turn over, please

1



Problem 9. Design a Turing machine for computing negation f(n) = ¬n in
unary code: f(0) = 1 and f(n) = 0 for all n > 0. In other words:

� if the first symbol after the initial blank space is 1, we need to erase the
number and go back;

� if the first symbol after the initial blank space is empty, then we need to
place 1 there and go back.

Trace your Turing machine for n = 1.

2


