
Solutions to Test 1, Theory of Computations,

Spring 2025

Problem 1. Translate, step-by-step, the following for-loop into a primitive
recursive expression:

int x = a + b;

for (int i = 1; i <= c; i++)

{x = x * c;}

You can use sum(.,.) and mult(., .) (product) in this expression.

Solution. In general, the value x depends on a, b, c, and on the number of
the iteration, so we have x(a, b, c,m). For m = 0, before the iteration starts, we
have

x(a, b, c, 0) = sum(a, b).

At each iteration step, we multiply c by the previous value:

x(a, b, c,m+ 1) = mult(x(a, b, c,m), c).

In general, primitive recursion defines a function of k+1 variables. In our case,
x(a, b, c,m) is a function of 4 variables, so k + 1 = 4 and k = 3. For k = 3, the
general primitive recursion takes the form:

h(n1, n2, n3, 0) = f(n1, n2, n3);

h(n1, n2, n3,m+ 1) = g(n1, n2, n3,m, h(n1, n2, n3m)).

To match, we rename x into h, a into n1, b into n2, and c into n3. As a result,
we get:

h(n1, n2, n3, 0) = sum(n1, n2);

h(n1, n2, n3,m+ 1) = mult(h(n1, n2, n3,m), n2).

Thus, here, f = sum(π3
1 , π

3
2), g = mult(π5

5 , π
5
2) and thus,

x = PR(sum(π3
1 , π

3
2),mult(π5

5 , π
5
2)).

1

Problem 2. Translate, step-by-step, the following primitive recursive function
into a for-loop:

F = σ(PR(mult(π3
1 , π

3
2), sum(π5

5 , π
5
2))).

For this function F , what is the value F (2, 0, 1, 1)?

Solution. Here, F = σ(PR(. . .)), so to the result h of primitive recursion, we
should add 1: F (n1, . . . ,m) = h(n1, . . . ,m) + 1.

In the general expression for primitive recursion h = PR(f, g), g is the
function of k+2 variables. Here, π5

1 is a function of 5 variables, so mult(π5
5 , π

5
2)

is also a function of 5 variables, and thus k = 3. For k = 3, the general
expression for primitive recursion takes the form:

h(n1, n2, n3, 0) = f(n1, n2, n3);

h(n1, n2, n3,m+ 1) = g(n1, n2, n3,m, h(n1, n2, n3,m)).

In our case,
h(n1, n2, n3, 0) = mult(π3

1 , π
3
2) = n1 · n2;

h(n1, n2, n3,m+ 1) = sum(π5
5 , π

5
2) = h(n1, n2, n2,m) + n2.

Thus, in the loop, for each iteration i = m+1, we add n2 to the previous value
of h.

To the result h(n1, n2, n3,m) of primitive recursion, we apply σ, which means
that at the end, we should add 1. So, we get the following code:

h = n1 * n2;

for(int i = 1; i <= m; i++)

{h = h + n2;}

F = h + 1;

From the above formulas, for n1 = 2 and n2 = 0, we first get:

h(2, 0, 1, 0) = 2 · 0 = 0.

To get the value h(2, 0, 1, 1), we need to take m + 1 = 1, i.e., m = 0, then we
get:

h(2, 0, 1, 1) = 0 + 0 = 0.

Finally, we add 1 and get F (2, 0, 1, 1) = h(2, 0, 1, 1) + 1 = 0 + 1 = 1.

2

Problem 3-4. Prove, from scratch, that the function f(b, n) = n!/bn is primi-
tive recursive, where n! stands for the factorial of n, i.e., for the product 1·2·. . .·n.
Start with the definitions of a primitive recursive function, and use only this
definition in your proof – do not simply mention results that we proved in class,
prove them.

Solution. Since, by definition, the composition of p.r. functions is p.r., to prove
that the desired function is primitive recursive (p.r.), it is sufficient to prove the
following:

� that the power bn is p.r.,

� that the factorial n! is p.r., and

� that integer division is p.r.

1. The power function bn = power(b, n) can be represented as

power(b, n) = b · . . . · b (n times),

thus
power(b, 0) = 1;

power(b, n+ 1) = power(b, n) · b.

So, to prove that the power function is p.r., it is sufficient to prove that multi-
plication is p.r.

1.1. Multiplication can be represented as

mult(a, b) = a · b = a+ . . .+ a (b times),

thus
mult(a, 0) = 0;

mult(a, b+ 1) = mult(a, b) + a.

So, to prove that multiplication is p.r., it is sufficient to prove that addition is
p.r.

1.2. Addition is p.r. since the function

add(a, b) = a+ b = a+ 1 + . . .+ 1 (b times)

can be represented as
add(a, 0) = a;

add(a, b+ 1) = add(a, b) + 1.

2. Factorial fact(n) can be represented as follows;

fact(0) = 1;

3

fact(n+ 1) = fact(n) ∗ (n+ 1).

It is thus primitive recursive.

3. Integer division b/a – which we will denote by div(a, b) – can be represented
as:

div(a, 0) = 0;

div(a,m+ 1) = if (rem(a,m+ 1) > 0) then div(a,m) else div(a,m) + 1.

Thus, to prove that division is p.r., it is sufficient to prove that remainder is
p.r. and that if-then-else construction is p.r.

3.1. The remainder function rem(a, b) = b% a can be represented as follows:

rem(a, 0) = 0;

rem(a, b+ 1) = if (rem(a, b) + 1 < b) then (rem(a, b) + 1) else 0.

To show that this expression is p.r., we need to show:

� that < is p.r., and

� that the if-then-else construction is p.r.

3.2. Let us first show that the relation r < b is p.r. Indeed, the condition r < b
is equivalent to b .− r > 0, where:

� b .− r = b− r if b > r and

� b .− r = 0 otherwise.

So, to prove that r < b is p.r., it is sufficient to prove that the subtraction
sub(b, r) = b .− r is p.r., and that the relation a > 0 is p.r.

3.3. Subtraction can be represented as

sub(b, 0) = b;

sub(b, r + 1) = sub(b, r) .− 1.

So, to prove that subtraction is p.r., it is sufficient to prove that the function
“previous” is p.r.

3.4. The function prev(n) = n− 1 is p.r., since it can be represented as:

prev(0) = 0;

prev(a+ 1) = a.

3.5. The relation a > 0 describing that a is positive – we will denote it pos(a)
– is p.r.: indeed, 0 is not positive, but every number of the type m+ 1 is:

pos(0) = 0;

4

pos(m+ 1) = 1.

3.6. Let us no show that the if-the-else construction is p.r. Indeed, the if-then-
else construction can be represented as

if (P (n)) then f(n) else g(n) = P (n) · f(n) + (1 .− P (n)) · g(n).

We already proved that multiplication is primitive recursive, so remainder is
also p.r., and thus, division is p.r.

4. Thus, the desired function – which is a composition of p.r. functions – is also
p.r.

5

Problem 5. Prove that the following function f(b, n) is µ-recursive: f(b, n) =
n!/bn when n ≤ 3, and f(b, n) is undefined for all other n. You can use the fact
that division and power are primitive recursive.

Solution. Here,
f(b, n) = µm.(n ≤ 3&m = n!/bn).

6

Problem 6. Translate the following µ-recursive expression into a while-loop:

f(b) = µn.(n!/bn > 1).

For this function f , what is the value of f(1)? f(2)? Take into account that
0! = 1 and b0 = 1 for all b.

Solution.

int n = 0;

while(!(fact(n)/power(b,n) > 1))

{n++;}

For b = 1:

� For n = 0, we have 0!/b0 = 1/1 = 1 which is not larger than 1.

� For n = 1, we similarly have 1!/11 = 1/1 = 1 which is also not larger
than 1.

� Finally, for n = 2, we have 2!/12 = 2/1 > 1. So, f(1) = 2.

For b = 2:

� For n = 0, we have 0!/20 = 1/1 = 1 which is not larger than 1.

� For n = 1, we similarly have 1!/21 = 1/2 = 0 which is also not larger
than 1.

� For n = 2, we have 2!/22 = 2/4 = 0 which is also not larger than 1.

� For n = 3, we have 3!/23 = 6/8 = 0.

� For n = 4, we have 4!/24 = 24/16 = 1.

� Finally, for n = 5, we have 5!/25 = 120/32 = 3 > 1. So, f(2) = 5.

7

Problem 7-8. What if, in addition to 0, πk
i , and σ, we also allow the function

A(A(n)) in our constructions? Let us call functions that can be obtained from 0,
πk
i , σ, and A(A(n)) by using composition and primitive recursion AA-primitive

recursive functions. Will then every computable function be AA-primitive re-
cursive? Prove that your answer is correct.

Detailed solution. On the test, a shorter form is OK.

First part of the proof. Let us first describe how we can assign, to each
AA-p.r. function, a natural number that we will call this function’s AA-pr-code.
This will be done in several steps.

� By definition, an AA-p.r. function is obtained from 0, σ, πk
i , and A(A(n))

by using composition ◦ and primitive recursion PR. Thus, each such
function can be described by an expression containing these symbols and
parentheses (and). For example, addition is described as PR(0, σ ◦ π3

3).

� Symbols 0 and PR are ASCII symbols, which means that they can be
directly typed on a usual computer keyboard. However, symbols σ, πk

i ,
and ◦ are not. To describe them in ASCII, we can use, e.g., LATEX, a lan-
guage specifically designed by renowned computer scientist Donald Knuth
to translate mathematical symbols into ASCII. In this language, σ, πk

i ,
and ◦ are described as follows:

\sigma, \pi^k_i, \circ

� After we use this translation, we get a sequence of ASCII symbols. For
example, the expression corresponding to addition takes the form

PR(0,\sigma\circ\pi^3_3)

According to ASCII, each ASCII symbol is represented in a computer as a
sequence of 0s and 1s. For example, P is represented as 5016 = 0101 0000,
R is represented as 5216 = 0101 0010, etc., so the expression for addition
takes the form

0101 0000 0101 0010 . . .

� Finally, we append 1 in front of the resulting sequence of 0s and 1s, and
interpret the resulting binary sequence as a binary number. For example,
for addition, we will get

1 0101 0000 0101 0010 . . .

This number is what we will call an AA-pr-code of the original AA-
p.r. function.

Second part of the proof: an important lemma. To prove our result, we
will need the following lemma:

Lemma. There exists an algorithm that, given a natural number c:

8

� checks whether c is an AA-pr-code of some AA-p.r. function, and

� if it is, produces an executable file for computing this function; we will
denote this file by fc.

How we can prove this lemma. An AA-pr-code was obtained from the
original expression as follows

expression
LaTeX−→ ASCII expression

ASCII−→ binary sequence
append 1−→ AA-pr-code.

Thus, to get back from the AA-pr-code to the original AA-p.r. function, we need
to follow these steps in reverse order:

� First, we strip off the first 1 from the natural binary description of the given
natural number n, i.e., from a description in which we skip all leading 0s;
for example, n = 5 is represented as 101, not as 0101. As a result, we get
a binary sequence. This step is not possible only in one case: when n = 0;
in this case, we stop this algorithm and return the answer that n = 0 is
not an AA-pr-code of any AA-p.r. function.

� Second, we check whether the resulting binary sequence is indeed a se-
quence of valid ASCII symbols. This is what computers do all the time.

� Third, we use the LATEX compiler to check that the corresponding ASCII
sequence is a valid LATEX expression. This is what LATEX compilers do
all the time. If it is a valid LATEX expression, LATEX translates in into a
sequence of mathematical symbols.

� Finally, we check whether the resulting sequence of mathematical symbols
is syntactically correct; e.g.,

PR(0,

is not syntactically correct: we have an opening parenthesis but not a
closing one, and there is nothing after the comma. This is what compilers
do all the time. If it is syntactically correct, then we can use the same
ideas that we used before to translate this expression into the Java code:
PR corresponds to the for-loop. etc.

Final step of the proof. Let us now consider the function f(c) which is
defined as follows:

� if c is an AA-pr-code of an AA-p.r. function, we return f(c) = fc(c) + 1;

� otherwise, if c is not an AA-pr-code of an AA-p.r. function, we return

f(c) = 0.

Let is prove that this function is computable but not AA-primitive recursive.

Proving that the function f(c) is computable. This proof is straightfor-
ward: we just show how this function can be computed. Suppose that we are
given a natural number c. Then, to compute f(c), we do the following:

9

� First, we apply the algorithm A whose existence is proven by the lemma.
This algorithm either tells us that c is not an AA-pr-code – in which case
we return f(c) = 0 – or generates the file fc.

� If c is an AA-pr-code, we apply the executable file fc to the number c,
resulting in the value fc(c), and then add 1 to the result.

This can be described as follows:

c−→ is c an AA-pr-code?
yes−→ apply fc to c

fc(c)−→ add 1
fc(c)+1−→

↓ no

0

Proving that the function f(c) is not AA-primitive recursive. We will
prove this by contradiction. Let us assume that the function f(c) is AA-
primitive recursive. Let c0 denote its AA-pr-code. Then, by definition of fc
as an executable file that computes the original AA-p.r. function, for every
possible input n, we have

fc0(n) = f(n).

In particular, for n = c0, we have

fc0(c0) = f(c0).

On the other hand, by definition of the function f(c), since c0 is an AA-pr-code,
we get

f(c0) = fc0(c0) + 1.

By comparing these two equalities, we conclude that fc0(c0) = fc0(c0)+1, i.e., if
we subtract fc0(c0) from both sides, that 0 = 1. This is clearly a contradiction.

The only assumption that we made to get this contradiction is that the
function f(c) is AA-primitive recursive. Thus, this assumption is wrong, and
the above defined function f(c) is not AA-primitive recursive.

Conclusion. We have come up with a function f(c) which is computable but
not AA-primitive recursive. Thus, the result is proven.

10

Problem 9. Design a Turing machine for computing negation f(n) = ¬n in
unary code: f(0) = 1 and f(n) = 0 for all n > 0. In other words:

� if the first symbol after the initial blank space is 1, we need to erase the
number and go back;

� if the first symbol after the initial blank space is empty, then we need to
place 1 there and go back.

Trace your Turing machine for n = 1.

Solution. The resulting Turing machine is as follows:

� start, – → R, check

� check, 1 → R, move

� move, 1 → R, move

� move, – → L, erase

� erase, 1 → –, L, erase

� erase, – → halt

� check, – → 1, L, halt

Tracing:

– 1 – – – – – . . . start

– 1 – – – – – . . . check

– 1 – – – – – . . . move

– 1 – – – – – . . . erase

– – – – – – – . . . erase

– – – – – – – . . . halt

11

