Test 2, Theory of Computation, Spring 2025

Problem 1. Prove that it is not possible, given a program that always halts,
to check whether this program always computes n? + 2n.

Problem 2. Design a Turing machine that computes n 4+ 4 in binary code for
all n > 4. Trace this machine on the example of n = 11015.

Problem 3. Use a general algorithm for a Turing machine that represents
composition to transform your design from Problem 2 into a Turing machine
for computing f(f(n)) =n+ 8.

Problem 4. Give a formal definition of feasibility and explain what is practi-
cally feasible. Give two examples:

e an example when an algorithm is feasible in the sense of the formal defi-
nition but not practically feasible, and

e an example when an algorithm is practically feasible, but not feasible
according to the formal definition.

These examples must be different from the examples that we had in class, in
posted lectures, homeworks, or in last years’ solutions.

Problem 5. What is P? NP? NP-hard? NP-complete? Brief definitions are
OK. What do we gain and what do we lose when we prove that a problem is
NP-complete? Explain one negative consequence (what we cannot do) and one
positive one (what we can do).

Problem 6. What is propositional satisfiability? Give an example. Explain
why this problem is important in software testing.



