
Solutions to Test 2, Theory of Computation,

Spring 2025

Problem 1. Prove that it is not possible, given a program that always halts,
to check whether this program always computes n2 + 2n.

Solution. We will prove that if such a checker exists, then we can construct a
zero-checker – and we already know that zero-checkers are not possible. Indeed,
let us assume that we have an algorithm checker(p) that, given a program p
that always halts, checked whether ∀n (p(n) = n2 + 2n). Suppose that we have
a program q that always halts and we want to check whether this program q
always returns 0. To check this, we form the following auxiliary program that
always returns q(n) + n2 + 2n:

public static int aux(int n)

{return q(n) + n * n + 2 * n;}

The value q(n)+n2+2n is always equal to n2+2n if and only if the value q(n)
is always equal to 0.

Thus, the algorithm checker(q(n) + n2 + 2n) that applies checker to the
above auxiliary program is a zero-checker. However, we have proven that zero-
checkers do not exist. This contradiction shows that our assumption – that the
desired checkers are possible – leads to a contradiction. Thus, such checkers are
not possible. The result is proven.

1

Problem 2. Design a Turing machine that computes n+ 4 in binary code for
all n ≥ 4. Trace this machine on the example of n = 11012.

Solution. When we add 410 = 1002 to a binary number, the last two bits of
1002 are 0s, so the last two bits of the sum do not change; for other bits, we have
the same algorithm as for computing n+ 1. Here is the resulting algorithm:

� we skip the last two bits,

� after that, if we see 1, we replace 1 with 0;

� if we see 0 or blank, we replace it with 1 and start going back.

Here are the corresponding Turing machine rules:

� start, – → R, skip1st

� skip1st, 1 → R, skip2nd

� skip1st, 0 → R, skip2nd

� skip2nd, 1 → R, moving

� skip2nd, 0 → R, moving

� moving, 1 → 0, R

� moving, 0 → 1, L, back

� moving, – → 1, L, back

� back, 0 → L

� back, 1 → L

� back, – → halt

Here is a tracing on the example of 1101 + 100:

– 1 0 1 1 – . . . start

– 1 0 1 1 – . . . skip1st

– 1 0 1 1 – . . . skip2nd

– 1 0 1 1 – . . . moving

– 1 0 0 1 – . . . moving

– 1 0 0 0 – . . . moving

– 1 0 0 0 1 . . . back

– 1 0 0 0 1 . . . back

2

– 1 0 0 0 1 . . . back

– 1 0 0 0 1 . . . back

– 1 0 0 0 1 . . . back

– 1 0 0 0 1 . . . halt

3

Problem 3. Use a general algorithm for a Turing machine that represents
composition to transform your design from Problem 2 into a Turing machine
for computing f(f(n)) = n+ 8.

Solution.

� start, – → R, skip1st1

� skip1st1, 1 → R, skip2nd1

� skip1st1, 0 → R, skip2nd1

� skip2nd1, 1 → R, moving1

� skip2nd1, 0 → R, moving1

� moving1, 1 → 0, R

� moving1, 0 → 1, L, back1

� moving1, – → 1, L, back1

� back1, 0 → L

� back1, 1 → L

� back1, – → start2

� start2, – → R, skip1st2

� skip1st2, 1 → R, skip2nd2

� skip1st2, 0 → R, skip2nd2

� skip2nd2, 1 → R, moving2

� skip2nd2, 0 → R, moving2

� moving2, 1 → 0, R

� moving2, 0 → 1, L, back2

� moving2, – → 1, L, back2

� back2, 0 → L

� back2, 1 → L

� back2, – → halt

4

Problem 4. Give a formal definition of feasibility and explain what is practi-
cally feasible. Give two examples:

� an example when an algorithm is feasible in the sense of the formal defi-
nition but not practically feasible, and

� an example when an algorithm is practically feasible, but not feasible
according to the formal definition.

These examples must be different from the examples that we had in class, in
posted lectures, homeworks, or in last years’ solutions.

Solution. An algorithm A is feasible if there exists a polynomial P (n) such
that for each input x of size len(x) = n, the computation time tA(x) is smaller
than or equal to P (n):

tA(x) ≤ P (len(x)).

An algorithm is practically feasible if for every input of reasonable length, this
algorithm finishes computations in reasonable time.

Examples:

� an example when an algorithm is formally feasible, but not practically
feasible: twA(n) = 102025;

� an example when an algorithm is practically feasible but not formally
feasible: twA(n) = exp(10−2025 · n).

Here are the explanations for both examples.

First example: tA(x) = 102025. This is a constant – so it is feasible in the sense
of the formal definition. On the other hand, in class, we learned that:

� even if we have as many computational devices as physically possible – i.e.,
if every single elementary particle – and there are 1090 of them – serves
as a computational,

� and even if each of these computational devices performs one computa-
tional steps during each shortest possible periods of time – and there are
about 1040 of them during the lifetime of the Universe,

then overall, we can perform no more than 1090 · 1040 = 10130 computational
steps, and 102024 is larger than 10130.

Second example: tA(x) = exp
(
10−2025 · len(x)

)
. This function is exponentially

growing – thus, not feasible in the sense of the formal definition, since every
exponential function grows faster than a polynomial.

However, in practice, the length of the input cannot be larger than the length
that would get if we combine all the knowledge that we have in the world – which
would be approximately len(x) = 1020 bits. Even for this huge number of bits,
this algorithm would require

tA(x) = exp
(
10−2025 · 1020

)
= exp

(
10−2005

)
5

computational steps. Since 10−2005 is smaller than 1 and exp(x) = ex is an
increasing function, we conclude that

tA(x) = exp
(
10−2005

)
≤ exp(1) = 2.7128 . . . ,

i.e., this algorithm would require 1 or 2 steps, which is clearly feasible. If the
input is shorter than 1020 bits, we will need even fewer computational steps.

6

Problem 5. What is P? NP? NP-hard? NP-complete? Brief definitions are
OK. What do we gain and what do we lose when we prove that a problem is
NP-complete? Explain one negative consequence (what we cannot do) and one
positive one (what we can do).

Solution.

� P is the class of all the problems that can be solved in polynomial
(= feasible) time.

� NP is the class of all the problems for which, once you have a candidate
for a solution, you can check, in polynomial time, whether this candidate
is indeed a solution.

� A problem from the class NP is called NP-complete if every problem from
the class NP can be reduced to this problem.

� A problem is called NP-hard if every problem from the class NP can be
reduced to this problem. Comment: the difference from NP-completeness
is that an NP-hard problem may not be from the class NP.

What do we gain and what do we lose when we prove that a problem is
NP-complete? A positive consequence is that if we have a good algorithm for
solving some cases of the problem, then we automatically get good algorithms
for all other problems from the class NP – and many good algorithms have been
obtained this way. A negative consequence is that, unless it turns out that P =
NP, we cannot have a feasible algorithm for solving all particular cases of this
problem.

7

Problem 6. What is propositional satisfiability? Give an example. Explain
why this problem is important in software testing.

Solution. Propositional satisfiability:

� given: a propositional formula, i.e., any expression obtained from Boolean
variables by using “and” (&& in Java), “or” (| | in Java), and “not” (! in
Java) – e.g., !(a | | !b) && (!a | | b);

� find: the values of the Boolean variables that make the given formula true.

Why is this problem important? Because when we test a program with
branching, we need to make sure that we have tested both branches. For this
purpose, we need to find the values of the variables for which the corresponding
condition is true. This is exactly what propositional satisfiability is about.

8

