Theory of Computation, Spring 2025
Solutions to Test 3

Problem 1. Explain where and how, in proof that satisfiability is NP-hard, we
use the two physical assumptions: that all speeds are bounded by the speed of
light, and that the volume of a sphere is proportional to the cube of its radius.

Solution. These two assumptions are used in two places:

e to prove that the number of neighbors — that can affect the state at the
next moment of time ¢t + At — is bounded by a constant that does not
depend on the size of the input, and

e to prove that the overall size of the resulting CNF formula is polynomial.

In the first place, all processors whose state at moment ¢ can affect the
state of the current cell at moment ¢ + At are located inside a sphere of radios
r = c- At with center in this cell. The volume of this sphere is v = (4/3) -7 - 73,
so within sphere, we can have no more than v/Av processors. This bounds
does not depend on the size of the input, so indeed, the number of neighbors is
bounded by a constant that does not depend on the size of the input.

In the second place, we are translating an algorithm C(x,y) that finishes
computations in polynomial time 7. During this time 7', only cells located at
distance < ¢ - T can affect the computation result. All these cells are located
in the sphere of radius R = c¢- T. The volume V of this sphere is const - R3 =
const-T%. Thus, the number of cells N5 is bounded by V/AV = const-T3. In
the CNF formula, we have formulas corresponding to all possible triples (i,b,t).
There are Neeps cells 4, B bits b, and T'/At moments of time ¢. Thus, the length
of the formula is bounded by T3 - B - T ~ T*. We know that T'(n) is bounded
by a polynomial of the size of the input. In this case, T* is also bounded by a
polynomial — 4th power of the polynomial bound for 7.

Problem 2. Use the general algorithm to translate the formula
(pV-ogVrVs)&(—sVi)

into 3-CNF.

Solution: According to the general algorithm, we introduce a new variable
r1 whose meaning is p V —q, then the satisfiability of the original formula is
equivalent to the satisfiability of the formula

(pV—g=r1)&(riVrVvs)&(-sVt).

Then, we reduce the formula p V —~¢ = r; to CNF.
The truth table for the negation N of this formula is:

[plalr|-ag|pVv-g|N]
0]101] O 1 1 1
0101 1 1 1 0
0[1] 0 0 0 0
01 1 0 0 1
1100 1 1 1
110 1 1 1 0
11110 0 1 1
1)1 1 0 1 0

Thus, the DNF form of N is
(p&—q&e) V (mp&qer) V (p&—q& o) V (p& g &).
Thus, the formula —p V g = r; has the following CNF form:
(pVaVvr)&(pV-qV-r)&(-pVgVr)&(-pV-gVr).
As a result we get the following 3-CNF expression:
(pVaVvr)&(pV-qV-r)&(-pVqVr)&(-pV-qVr)&

(riVrVvs)&(—sVi).

Problem 3—4. Reduce the satisfiability problem for the formula

to:

(aVbV—c)&(aV-d)

3-coloring,
clique,
subset sum problem, and

interval computations.

In all these reductions, explain what will correspond to a = T, b = F, and
c=T.

Solution: For 3-coloring, we do the following:

We start with the palette, i.e., with vertices T, F, and U which are con-
nected to each other.

We form vertices a and —a, and we connect them to each other and to U.
We form vertices b and —b, and we connect them to each other and to U.
We form vertices ¢ and —¢, and we connect them to each other and to U.
We form a new vertex a V b and connect it to U.

We form new vertices (a V b); and —¢q, connect them to each other and
to T, connect (a V b); to a Vb, and connect —¢; to —c.

We form new vertices a; and by, connect them to each other and to a V b,
connect a; to a, and connect by to b.

We form new vertices as and —bo, connect them to each other and to T,
connect as to a, and connect —by to —b.

When a =T,b=F, and c =T, we can color the vertices in the following colors:

The vertex T is colored T, the vertex F is colored F, and the vertex U is
colored with color U.

a is colored with color T, —a is colored with color F.
b is colored with color F, —b is colored with color T.
¢ is colored with color T, —c is colored with color F.
The vertex a V b is colored with color T.

The vertex (a V b); is colored F, the vertex ¢ is colored U.

e About the vertices a; and b1, we have a choice: one of them can be colored
by F, another one by U.

e The vertex as is colored F, the vertex —bs is colored U.

One can check that in this case, no two connected vertices have the same color.

For clique, we add the following vertices: ai, b1, —c1, az, and —by. We then:
e connect a; with as and —bsg;
e connect b; with as; and
e connect —e¢; with as and with —by.
The values a =T, b= F, and ¢ =T correspond to two possible 2-cliques:
e a; and as, and

o a; and —bs.

For subset sum, by applying the general algorithm, we get the following table:

a b C Cl 02
a |1 0 0] 1 1
|1 0 0| O 0
b |0 1 0|1 0
b |0 1 0] 0 1
c |0 0 1] 0 0
|0 0 1|1 0
c7lo 0 ol 1 o0
cylo o o1 o0
c,lo o olo 1
cylo 0 o0 1
1 1 1| 3 3

The values a =T, b = F, and ¢ = T correspond to selecting coins a = 10011,
=b = 01001, and ¢ = 00100. To get the desired sum 11133, we also need to add
coins C] = 00010, C% = 00010, and C4 = 00001.

For interval computations, we get the polynomial
(1-(1-4)-1-B)-C)-(1-(1-A4) B),

where A, B, and C are from the interval [0,1]. This polynomial attains the
value 1 when A =1, B =0, and C = 1, so its largest possible value is 1.

Problem 5. Show how to compute the “and” of 12 Boolean values in parallel
if we have an unlimited number of processors and we can ignore communication
time. Why do we need parallel processing in the first place? If we take commu-
nication time into account, how much time do we need to compute the “and”
of n values? What is NC? Give an example of a P-complete problem.

Solution:

e At moment ¢t = 1, Processor 1 computes r; = x1 & x2, Processor 2 com-
putes ro = x3 & x4, Processor 3 computes r3 = x5 & g, and Processor 4
computes r4 = x7 & 3.

e At moment ¢t = 2, Processor 1 computes r5 = r1 & ro, Processor 2 com-
putes r¢ = r3 & r4, Processor 3 computes r; = xg & x19, and Processor 4
computes rg = x11 & x12. As a result, we get r5 = z1 &z & 23 & x4 and
re = x5 & x6 & 17 & x3.

e At moment t = 3, Processor 1 computes r9 = r5 & rg and Processor 2
computes 19 = 17 & 5. As a result, we get the values rg = x1 & ... & xg
and T10 = L9 & 10 & T11 & T12.

e At moment ¢t = 4, Processor 1 computes the desired result r9 & r19. One
can easily check that this value is equal to x1 & ... & x12.

For this computation, we need 4 processors and 4 moments of time.

For computing the “and” of n values, sequential computations require at least
Tsequential(n) 2 n—1 Steps' Since Tparallel(n) 2 const - (Tsequential(n))1/47 we
thus need Tparanel(n) > c- ni/4,

NC is the class of all problems that can be computed on polynomial number
of processors (Nprocessors < P(n) for some polynomial P(n) of the length n of
the input) in polylog time, i.e., in time bounded by P(log(n)) for some polyno-
mial P(n).

An example of P-complete problem is linear programming: checking whether a
given set of linear inequalities a;; - 1 + ... + ain - Tn > b;, where a;; and b; are
known, and x; are unknowns, has a solution.

Problem 6. What can you say about the Kolmogorov complexity of the fol-
lowing string: 110110... in which 110 is repeated 7,000 times.

Solution: A possible program for producing this sequence x is as follows:

for(int i = 1; i <= 7000; i++)
System.out.print(’110°);

This program has 33 + 31 = 64 symbols, so the Kolmogorov complexity K (x)
of this string — which is the length of the shortest program for computing this
string — is smaller than or equal to 64: K(z) < 64.

Problem 7. Suppose that we have a probabilistic algorithm that gives a correct
answer half of the time. How many times do we need to repeat this algorithm
to reduce probability of error to at most 5%? Give an example of a probabilistic
algorithm. Explain why we need probabilistic algorithms in the first place.

Solution: The probability of error is 1 —1/2 = 1/2. We want the probability of
error to be smaller than 5% = 1/20. So, we need to select the smallest number

of iterations k£ for which)

ok
i.e., equivalently, for which 2% > 20.

1
<7a
20

e For k=1, we get 2! =2 < 20.

e For k=2, we get 22 = 4 < 20.

e For k =3, we get 23 = 8 < 20.

e For k = 4, we get 2¢ = 16 < 20.

e For k=5, we get 25 = 32 > 20.
Thus, we need 5 iterations.

An example of a probabilistic algorithm is an algorithm for checking program
correctness. If someone proposes a program f(z) that, given a real number
x € [0, 1], supposed to compute the desired expression g(x), then a natural way
to check whether the program is correct is run a random number generator
several times and check that for all the resulting random values 71, ..., 7, we
get f(ri) = g(ri).

We need probabilistic algorithms since many practical problems are NP-complete,
which means that we cannot have a feasible algorithm that always produced a

correct answer. It is thus reasonable to try to find a feasible algorithm that

produces a correct answer with some probability.

Problem 8. Use the variable-elimination algorithm for checking satisfiability
of the following 2-SAT formula:

(aV=c)&(bVe)&(—aV-b)&(cV —b).

Find all solutions.

Solution: Let us eliminate the variable a. Clauses containing a or —a lead to
the following inequalities:
c<a, a<-b

The condition that every lower bound must be smaller than or equal than every
upper bound leads to
c < —b.

This is equivalent to the clause —bV —c. So, for remaining variables b and ¢, we
have the following clauses:

(bVe)&(eV —b) & (—bV —c).

Let us now eliminate the variables b. Clauses containing b or —b lead to the
following inequalities:
—c<b b<ec b<-—e

The condition that every lower bound must be smaller than or equal than every
upper bound leads to the following inequalities:

—c<c¢ —c< e

The second of these inequalities is always trivially true. The first one is only
true when ¢ = 1. Thus, ¢ = 1. For ¢ = 1, inequalities containing b lead to

0<b, b<1, b<O0.

Thus, b = 0.
From ¢ < a, we can now conclude that a = 1. Thus, the only solution is
a=1,b=0,and c=1.

Problem 9. How is the “and” operation f(x1,z2) = x1 & x2 represented in
quantum computing? Provide a general formula and explain it on the example
when z; is true and both x5 and the auxiliary variable are false.

Solution: the general way to represent a function f(x1,...,x,) is as a mapping
[T1, ey Ty y) = 1y T, Y D f(T1, .0, T0)).
In our case, n = 2 and f(x1,x2) = x1 & z2, so we have
w1, 22, y) = |21, 22,y (21 & 22)).
In particular, when 7 = 1 and z3 = y = 0, we get

1,0,0) — [1,0,0 @ (1&0)) = |1,0,0 6 0) = |1,0,0).

Problem 10. Why do we need to study recursively enumerable (r.e.) sets?
Is the intersection of three r.e. sets still r.e.? If yes, prove it, if no, provide a
counterexample.

Solution. In most of the class, we used computing intuition, but in some cases,
it is useful to also use set-theoretic intuition, e.g., the intuitive notions of union
and intersection.

If we have three r.e. sets A, B, and C|, this means that we have 3 algorithms
that will eventually generate all the elements of each set and only then. To get
the intersection:

e first, we run all 3 algorithms for 1 hour, then we take the intersection of
what 3 algorithms produced;

e then, we run all three algorithms for 1 more hour; the lists, in general,
increase, so we again take the intersection,

e etc.

10

