Detailed Proof of the Result About Scale-Invariant Functions

Definition. A function f(x) is called scale-invariant if for every $\lambda > 0$, there exists a $\mu > 0$ such that y = f(x) implies y' = f(x'), where we denoted $y' = \mu \cdot y$ and $x' = \lambda \cdot x$.

Proposition 1. For every two real numbers A and a, the function $y = A \cdot x^a$ is scale-invariant.

Comment. In this and other proofs, we will add reminders about needed facts from algebra and calculus.

Proof. Let us assume that y = f(x), i.e., for this function f(x), that

$$y = A \cdot x^a$$
.

What can we then say about

$$y' = f(x') = A \cdot (x')^a$$
?

Substituting $x' = \lambda \cdot x$ into this expression, we get

$$y' = A \cdot (\lambda \cdot x)^a$$
.

Reminder. It known, from algebra, that $(A \cdot B)^c = A^c \cdot B^c$.

Thus, we get

$$y' = A \cdot \lambda^a \cdot x^a.$$

Since multiplication is commutative, we get

$$y' = \lambda^a \cdot A \cdot x^a = \lambda^a \cdot (A \cdot x^a).$$

Here,

$$A \cdot x^a = y,$$

so we conclude that

$$y' = \lambda^a \cdot y.$$

If we denote λ^a by μ , we get

$$y' = \mu \cdot y.$$

So, for $\mu = \lambda^a$, we have proved exactly what we wanted: that if y = f(x), then y' = f(x') for $y' = \mu \cdot y$. In this case, $\mu = \lambda^a$. The proposition is proven.

Comment. We have proven that all functions of the type $f(x) = A \cdot x^a$ are scale-invariant. Let us now prove that only such functions are scale-invariant.

Proposition 2. If a differentiable function f(x) is scale-invariant, then it is equal to $f(x) = A \cdot x^a$ for some A and a.

Proof. Let us assume that the differentiable function f(x) is scale-invariant. By definition of scale-invariance, this means that for every $\lambda > 0$, there exists some value μ (depending on λ) for which y = f(x) implies that y' = f(x'), where $y' = \mu \cdot y$ and $x' = \lambda \cdot x$. Since μ depends in λ , let us write this dependence in explicit form $\mu = \mu(\lambda)$.

Let us take any x and take y = f(x). Then, for each λ , we have y' = f(x'), where $y' = \mu(\lambda) \cdot y$ and $x' = \lambda \cdot x$. Substituting these expressions for y' and x' into the formula y' = f(x'), we conclude that

$$\mu(\lambda) \cdot y = f(\lambda \cdot x).$$

Here, by our choice of y, we have y = f(x). Substituting f(x) instead of y into the above equality, we get

$$\mu(\lambda) \cdot f(x) = f(\lambda \cdot x).$$

Let us now differentiate both sides of this equality with respect to λ : since the functions are equal, their derivatives should be equal too.

With respect to λ , the term f(x) – that does not depend on λ – is a constant. Thus, the derivative of the leftohand side takes the form

$$\frac{d\mu}{d\lambda} \cdot f(x)$$
.

Reminder. We used the fact that

$$\frac{d}{dx}(C \cdot f(x)) = C \cdot \frac{df}{dx}.$$

To compute the derivative of the right-hand side, we use the chain rule, and get

$$\frac{d}{d\lambda}f(\lambda\cdot x) = \frac{df}{dx}(\lambda\cdot x)\cdot \frac{d}{d\lambda}(\lambda\cdot x) = \frac{df}{dx}(\lambda\cdot x)\cdot x.$$

Reminder. Chain rule is $(f(g(x))' = f'(g(x)) \cdot d'(x))$. We also used the fact that the derivative of the linear function is equal to the coefficient at the variable, in particular:

$$\frac{d}{d\lambda}(\lambda \cdot x) = x.$$

Thus, the equality between derivatives of the left-hand side and of the right-hand side takes the form

$$\frac{d\mu}{d\lambda} \cdot f(x) = \frac{df}{dx} (\lambda \cdot x) \cdot x.$$

This equality is true for every $\lambda > 0$. To simplify this equality, let us take $\lambda = 1$, and let us denote by a the value of the derivative $\frac{d\mu}{d\lambda}$ for $\lambda = 1$. Then, we get the following:

$$a \cdot f = \frac{df}{dx} \cdot x.$$

Let us separate the variables. For this, we divide both sides of this equality by x and by f and multiply both sides by dx. Then, we get:

$$a \cdot \frac{dx}{x} = \frac{df}{f}.$$

Now, we integrate both sides, and get

$$a \cdot \ln(x) + C = \ln(f),$$

where C is the integration constant.

Reminder. We used the fact that

$$\int \frac{1}{x} \, dx = \ln(x) + C.$$

Now we have an expression for the logarithm $\ln(f)$ of the desired function Ef(x). To get the expression for the desired function f(x) itself, let us apply $\exp(z) = e^a$ to both sides. Then, we get

$$e^{a \cdot \ln(x) + C} = e^{\ln(f)} = f.$$

Reminder. Here, we used the definition of the logarithm: $\log_a(x)$ is the lower to which we need to raise a to get x, i.e., f or which $a^{\log_a(x)} = x$. Natural logarithm is simply logarithm base e = 2.78...: $\ln(x) = \log_e(x)$. Thus, by definition of the logarithm, $e^{\log_e(f)} = f$, i.e., indeed, $e^{\ln(f)} = f$.

The left0hand side is equal to $e^{a \cdot \ln(f)} \cdot e^C$. So, if we denote e^C by A, we get

$$f(x) = A \cdot e^{a \cdot \ln(x)}$$
.

Reminder. We used the fact from algebra that, in general, $A^{b+c} = A^b \cdot A^c$. This is easy to remember:

- A^b means $A \cdot A \cdot \ldots \cdot A$, where the multiplication is repeated b times, and
- A^c means $A \cdot A \cdot \ldots \cdot A$, where the multiplication is repeated c times.

Thus,

$$A^b \cdot A^c = A \cdot A \cdot \dots \cdot A \ (b \ times) \cdot A \cdot A \cdot \dots \cdot A \ (c \ times),$$

overall A is multiplied by itself b+c times, so indeed $A^{b+c}=A^b\cdot A^c$.

In the following step, we will another fact from algebra, that $(A^b)^c = A^{b \cdot c}$. Indeed, A^b means $A \cdot A \cdot \ldots \cdot A$, where the multiplication is repeated b times. Thus, $(A^b)^c$ means that we have A^b repeated c times:

$$(A^b)^c = A^b \cdot \ldots \cdot A^b \ (c \ times).$$

Substituting the expression for A^b into this formula, we get:

$$(A^b)^c = A \cdot A \cdot \ldots \cdot A \ (b \ times) \cdot \ldots \cdot A \cdot A \cdot \ldots \cdot A \ (b \ times).$$

We have c groups each of which has b A's. Thus, overall, we have $b \cdot c$ A's, i.e., indeed, $(A^b)^c = A^{b \cdot c}$.

Here, $e^{a\cdot \ln(x)}=\left(e^{\ln(x)}\right)^a$. We already know that $e^{\ln(x)}=x$, so $e^{a\cdot \ln(x)}=x^a$, and the above formula gets the desired form

$$y = A \cdot x^a.$$

The proposition is proven.