Solution to Problem 10

Task. Show that the class of all functions obtained from

\[y = \frac{1}{1 + \exp(-k \cdot x)} \]

by fractional-linear transformations is shift-invariant.

Solution. If we apply shift \(x \mapsto x + x_0 \) to the above expression, we get

\[Y = \frac{1}{1 + \exp(-k \cdot (x + x_0))}. \]

Let us show that \(Y \) can be obtained from \(y \) by a fractional-linear transformation. To get the expression for \(Y \) in terms of \(y \), we can do the following:

- use the known expression for \(y(x) \) to express \(x \) in terms of \(y \), and
- substitute the resulting expression \(x(y) \) into the above formula \(Y = Y(x) \); this way, we get \(Y = Y(x(y)) \), i.e., the desired expression for \(Y \) in terms of \(y \).

To get the expression for \(x \) in terms of \(y \), let is try to move all the terms related to \(x \) to one side of the equality and all the other terms to the other side. First, we can somewhat simplify the relation between \(x \) and \(y \) if we take inverses of both sides, then we get

\[\frac{1}{y} = 1 + \exp(-k \cdot x). \]

To separate the variables, we subtract 1 from both sides, resulting in

\[\exp(-k \cdot x) = \frac{1}{y} - 1. \]

The value \(x \) is under the exponential function, so to get it back we need to apply an inverse function – which is the logarithm. By applying natural logarithm to both sides, we get

\[-k \cdot x = \ln \left(\frac{1}{y} - 1 \right), \]

so

\[x = \frac{1}{-k} \cdot \ln \left(\frac{1}{y} - 1 \right). \]

Let us now substitute this expression for \(x(y) \) into the formula for \(Y(x) \). To compute \(Y \), we:
• first compute \(x + x_0 \).
• then we compute \(-k \cdot (x + x_0)\),
• then, we compute \(\exp(-k \cdot (x + x_0))\),
• then, we add 1 to this value, and
• finally, we divide 1 by the resulting sum.

Let us show, step by step, how this computation will look like if we substitute the above \(x(y) \) instead of \(x \).

• First, we compute

\[
x + x_0 = \frac{1}{-k} \cdot \ln \left(\frac{1}{y} - 1 \right) + x_0.
\]

• Then, we compute

\[
-k \cdot (x + x_0) = -k \cdot x - k \cdot x_0 = -k \cdot \frac{1}{-k} \cdot \ln \left(\frac{1}{y} - 1 \right) - k \cdot x_0.
\]

In the first term, we first divide by \(-k\), then multiply by \(-k\), so this term can be simplified:

\[
-k \cdot (x + x_0) = \ln \left(\frac{1}{y} - 1 \right) - k \cdot x_0.
\]

• Then, we compute

\[
\exp(-k \cdot (x + x_0)) = \exp \left(\ln \left(\frac{1}{y} - 1 \right) - k \cdot x_0 \right).
\]

It is known that \(\exp(a + b) = \exp(a) \cdot \exp(b)\), so

\[
\exp(-k \cdot (x + x_0)) = \exp \left(\ln \left(\frac{1}{y} - 1 \right) \right) \cdot \exp(-k \cdot x_0).
\]

By definition, natural logarithm \(\ln(a)\) is the power to which we need to raise \(e\) to get \(a\), so \(\exp(\ln(a)) = a\). Thus, the above expression takes the form

\[
\exp(-k \cdot (x + x_0)) = \left(\frac{1}{y} - 1 \right) \cdot \exp(-k \cdot x_0).
\]

To simplify this expression, we can add the two fractions in the right-hand side, and get

\[
\exp(-k \cdot (x + x_0)) = \frac{1 - y}{y} \cdot \exp(-k \cdot x_0) = -\frac{\exp(-k \cdot x_0) \cdot y + \exp(-k \cdot x_0)}{y}.
\]
• Now, we can add 1 to this value, and get
\[1 + \exp(-k \cdot (x + x_0)) = \frac{-\exp(-k \cdot x_0) \cdot y + \exp(-k \cdot x_0)}{y} + 1. \]
If we add the two fractions in the right-hand side, we get
\[1 + \exp(-k \cdot (x + x_0)) = \frac{-\exp(-k \cdot x_0) \cdot y + \exp(-k \cdot x_0) + y}{y} = \frac{(1 - \exp(-k \cdot x_0)) \cdot y + \exp(-k \cdot x_0)}{y}. \]
• Finally, we divide 1 by the resulting fraction, which means we swap the numerator and the denominator:
\[Y = \frac{y}{(1 - \exp(-k \cdot x_0)) \cdot y + \exp(-k \cdot x_0)}. \]

We indeed get the expression for \(Y \) as a ratio of two linear functions of \(y \). So, \(Y \) can indeed obtained from \(y \) by a fractional-linear transformation.

Comment. This derivation can be simplified if we take into account that
\[\exp(-k \cdot (x + x_0)) = \exp(-k \cdot x - k \cdot x_0) = \exp(-k \cdot x) \cdot \exp(-k \cdot x_0). \]
We know that \(\exp(-k \cdot x) = \frac{1}{y} - 1 \), so
\[\exp(-k \cdot (x + x_0)) = \left(\frac{1}{y} - 1 \right) \cdot \exp(-k \cdot x_0). \]

By adding the fractions in the right-hand side, we get:
\[\exp(-k \cdot (x + x_0)) = \frac{-\exp(-k \cdot x_0) \cdot y + \exp(-k \cdot x_0)}{y}. \]
Now, we can add 1 to this value, and get
\[1 + \exp(-k \cdot (x + x_0)) = \frac{-\exp(-k \cdot x_0) \cdot y + \exp(-k \cdot x_0)}{y} + 1. \]
If we add the two fractions in the right-hand side, we get
\[1 + \exp(-k \cdot (x + x_0)) = \frac{-\exp(-k \cdot x_0) \cdot y + \exp(-k \cdot x_0) + y}{y} = \frac{(1 - \exp(-k \cdot x_0)) \cdot y + \exp(-k \cdot x_0)}{y}. \]
Finally, we divide 1 by the resulting fraction, which means we swap the numerator and the denominator:
\[Y = \frac{y}{(1 - \exp(-k \cdot x_0)) \cdot y + \exp(-k \cdot x_0)}. \]