Solution to Homework 1

Definition. A function f(x) is called scale-shift-invariant if for every $\lambda > 0$, there exists a value y_0 such that y = f(x) implies y' = f(x'), where we denoted $y' = y + y_0$ and $x' = \lambda \cdot x$.

Proposition. If a differentiable function f(x) is scale-shift-invariant, then it is equal to $f(x) = A + a \cdot \ln(x)$ for some A and a.

Proof. Let us assume that the differentiable function f(x) is scale-shift-invariant. By definition of scale-shift-invariance, this means that for every $\lambda > 0$, there exists some value y_0 (depending on λ) for which y = f(x) implies that y' = f(x'), where $y' = y + y_0$ and $x' = \lambda \cdot x$. Since y_0 depends in λ , let us write this dependence in explicit form $y_0 = y_0(\lambda)$.

Let us take any x and take y = f(x). Then, for each λ , we have y' = f(x'), where $y' = y + y_0(\lambda)$ and $x' = \lambda \cdot x$. Substituting these expressions for y' and x' into the formula y' = f(x'), we conclude that

$$y + y_0(\lambda) = f(\lambda \cdot x).$$

Here, by our choice of y, we have y = f(x). Substituting f(x) instead of y into the above equality, we get

$$f(x) + y_0(\lambda) = f(\lambda \cdot x).$$

Let us now differentiate both sides of this equality with respect to λ : since the functions are equal, their derivatives should be equal too.

With respect to λ , the term f(x) – that does not depend on λ – is a constant. Thus, the derivative of the left-hand side takes the form

$$\frac{dy_0}{d\lambda}$$
.

To compute the derivative of the right-hand side, we use the chain rule, and get

$$\frac{d}{d\lambda}f(\lambda\cdot x) = \frac{df}{dx}(\lambda\cdot x)\cdot \frac{d}{d\lambda}(\lambda\cdot x) = \frac{df}{dx}(\lambda\cdot x)\cdot x.$$

Thus, the equality between derivatives of the left-hand side and of the right-hand side takes the form

 $\frac{dy_0}{d\lambda} = \frac{df}{dx}(\lambda \cdot x) \cdot x.$

This equality is true for every $\lambda > 0$. To simplify this equality, let us take $\lambda = 1$, and let us denote by a the value of the derivative $\frac{dy_0}{d\lambda}$ for $\lambda = 1$. Then, we get the following:

$$a = \frac{df}{dx} \cdot x.$$

Let us separate the variables. For this, we divide both sides of this equality by x and multiply both sides by dx. Then, we get:

$$a \cdot \frac{dx}{x} = df.$$

Now, we integrate both sides, and get

$$a \cdot \ln(x) + A = f,$$

where A is the integration constant. The proposition is proven.