Let us consider families of the type \(\{ C \cdot f(x) \}_C \), where \(f(x) \) is fixed and \(C \) can take any value. Let us define shift \(T_{x_0} \) as an operation that transforms a family \(\{ C \cdot f(x) \}_C \) into a new family \(\{ C \cdot f(x + x_0) \}_C \).

Theorem. If an optimality criterion on the set of all such alternatives is final and shift-invariant, then each function which from the optimal family has the form \(f(x) = A \cdot \exp(a \cdot x) \).

Proof. Let \((<, \sim)\) be a final shift-invariant optimality criterion on the set of all alternatives, and let \(F_{\text{opt}} = \{ C \cdot f_{\text{opt}}(x) \}_C \) be the optimal family.

By definition of optimality, this means that \(F_{\text{opt}} \) is better or of the same quality than all other families, i.e., that for every family \(F \), we have:

either \(F_{\text{opt}} > F \) or \(F_{\text{opt}} \sim F \).

In particular, this means that for every \(F \) and for every \(x_0 \), we have

\[F_{\text{opt}} > T_{-x_0}(F) \text{ or } F_{\text{opt}} \sim T_{-x_0}(F). \]

Due to scale-invariance, we have

\[T_{x_0}(F_{\text{opt}}) > T_{x_0}(T_{-x_0}(F)) \text{ or } T_{x_0}(F_{\text{opt}}) \sim T_{x_0}(T_{-x_0}(F)). \]

But here, \(T_{x_0}(T_{-x_0}(F)) = F \). Thus, for every \(F \), we have

\[T_{x_0}(F_{\text{opt}}) > F \text{ or } T_{x_0}(F_{\text{opt}}) \sim F. \]

By definition of an optimal alternative, this means that the family \(T_{x_0}(F_{\text{opt}}) \) is optimal. The optimality criterion is final, which means that there is only one optimal family. Thus, \(T_{x_0}(F_{\text{opt}}) = F_{\text{opt}} \).

This means that every function from the family

\[T_{x_0}(F_{\text{opt}}) = \{ C \cdot f_{\text{opt}}(x + x_0) \}_C \]

also belongs to the family \(F_{\text{opt}} \), i.e., has the form \(C \cdot f_{\text{opt}}(x) \) for some \(C \). In particular, this is true for the function \(f_{\text{opt}}(x + x_0) \) from the family \(T_{x_0}(F_{\text{opt}}) \). Thus, for every \(x_0 \), there exists a value \(C \) depending on \(x_0 \) for which

\[f_{\text{opt}}(x + x_0) = C(x_0) \cdot f_{\text{opt}}(x). \]

We have already proven that any function with this property has the form \(f(x) = A \cdot \exp(a \cdot x) \).

The statement is proven.