How We Humans Fuse Different Types of Uncertainty when Making Decisions

Laxman Bokati¹ and Vladik Kreinovich²

¹Computational Science Program, ²Department of Computer Science University of Texas at El Paso, El Paso, Texas 79968, USA lbokati@miners.utep.edu, vladik@utep.edu

Introduction

- In many practical situations, we need to make a decision.
- In many applications, we do not know the exact consequences of each action.
- In such situations, we need to make a decision under uncertainty.
- In many application areas, uncertainty is small and can be made even smaller by extra measurements.
- For example, for a self-driving car, we can accurately measure all the related values and events.
- However, there are applications when it is difficult to decrease uncertainty.
- One such area is anything related to human activities.
- Humans make individual decisions based on their perceived value of different alternatives.

Decision Theory: A Brief Reminder

- To make a decision, we must:
 - find out the user's preference, and
- help the user select an alternative which is the best
 according to these preferences.
- Traditional approach is based on an assumption that for each two alternatives A' and A'', a user can tell:
- whether the first alternative is better for him/her; we will denote this by A'' < A';
- or the second alternative is better; we will denote this by A' < A'';
- or the two given alternatives are of equal value to the user; we will denote this by $A' \sim A''$.

The Notion of Utility

- Under the above assumption, we can form a natural numerical scale for describing preferences.
- Let us select a very bad alternative A_0 and a very good alternative A_1 .
- Then, most other alternatives are better than A_0 but worse than A_1 .
- For every prob. $p \in [0, 1]$, we can form a lottery L(p) in which we get A_1 w/prob. p and A_0 w/prob. 1 p.
- When p = 0, this lottery simply coincides with the
- alternative A_0 : $L(0) = A_0$. • The larger the probability p of the positive outcome

$$p' < p''$$
 implies $L(p') < L(p'')$.

• Finally, for p = 1, the lottery coincides with the alternative A_1 : $L(1) = A_1$.

increases, the better the result:

- Thus, we have a continuous scale of alternatives L(p) that monotonically goes from $L(0) = A_0$ to $L(1) = A_1$.
- Due to monotonicity, when p increases, we first have L(p) < A, then we have L(p) > A.
- The threshold value is called the *utility* of the alternative A:

$$u(A) \stackrel{\text{def}}{=} \sup\{p : L(p) < A\} = \inf\{p : L(p) > A\}.$$

• Then, for every $\varepsilon > 0$, we have

$$L(u(A) - \varepsilon) < A < L(u(A) + \varepsilon).$$

• We will describe such (almost) equivalence by \equiv , i.e., we will write that $A \equiv L(u(A))$.

A Rational Agent Should Maximize Utility

- Suppose that we have found the utilities u(A'), u(A''), ..., of the alternatives A', A'', ...
- Which of these alternatives should we choose?
- By definition of utility, we have:
- $A \equiv L(u(A))$ for every alternative A, and
- L(p') < L(p'') if and only if p' < p''.
- We can thus conclude that A' is preferable to A'' if and only if u(A') > u(A'').
- In other words, we should always select an alternative with the largest possible value of utility.

How to Estimate Utility of an Action

- \bullet For each action, we usually know possible outcomes
- We can often estimate the prob. p_1, \ldots, p_n of these out-

 S_1,\ldots,S_n .

- By definition of utility, each situation S_i is equiv. to a lottery $L(u(S_i))$ in which we get:
- A_1 with probability $u(S_i)$ and

bility p_i : $P(S_i) = p_i$;

- A_0 with the remaining probability $1 u(S_i)$.
- Thus, the action is equivalent to a complex lottery in which:
 - first, we select one of the situations S_i with proba-
 - then, depending on S_i , we get A_1 with probability $P(A_1 | S_i) = u(S_i)$ and A_0 w/probability $1 u(S_i)$.
- Reminder:
- first, we select one of the situations S_i with probability p_i : $P(S_i) = p_i$;
- then, depending on S_i , we get A_1 with probability $P(A_1 | S_i) = u(S_i)$ and A_0 w/probability $1 u(S_i)$.
- The prob. of getting A_1 in this complex lottery is:

$$P(A_1) = \sum_{i=1}^{n} P(A_1 \mid S_i) \cdot P(S_i) = \sum_{i=1}^{n} u(S_i) \cdot p_i.$$

- In the complex lottery, we get:
- A_1 with prob. $u = \sum_{i=1}^{n} p_i \cdot u(S_i)$, and
- A_0 w/prob. 1-u.
- So, we should select the action with the largest value of expected utility $u = \sum p_i \cdot u(S_i)$.

To Practical Applications of Decision Theory

- The numerical value of utility depends on the selection of the alternatives A_0 and A_1 .
- If we select a different pair (A'_0, A'_1) , then utility changes into $u'(A) = a \cdot u(A) + b$ for some a > 0 and b.
- \bullet The dependence of utility of money is non-linear.
- Utility u is proportional to the square root of the amount m of money $u = c \cdot \sqrt{m}$.
- ullet If we have an amount m of money now, then we can place it in a bank and add an interest.
- So, we get the new amount $m' \stackrel{\text{def}}{=} (1+i) \cdot m$ in a year.
- Thus, the amount m' in a year is equivalent to the value $m = q \cdot m'$ now, where $q \stackrel{\text{def}}{=} 1/(1+i)$.
- This is called *discounting*.

Decision Making Under Interval Uncertainty

- In real life, we rarely know the exact consequences of each action.
- So, for an alternative A, we often only know the bounds on u(A): $\underline{u}(A) \leq u(A) \leq \overline{u}(A)$.
- For such an interval case, we need to be able to compare the interval-valued alternative with lotteries L(p).
- As a result of such comparison, we will come up with a utility of this interval.
- So, we need to assign, to each interval $[\underline{u}, \overline{u}]$, a utility value $u(\underline{u}, \overline{u}) \in [\underline{u}, \overline{u}]$.
- Reminder: utility is determined modulo a linear transformation $u' = a \cdot u + b$.
- Reasonable to require: the equivalent utility does not change with re-scaling: for a > 0 and b,

$$u(a \cdot u^{-} + b, a \cdot u^{+} + b) = a \cdot u(u^{-}, u^{+}) + b.$$

- For $u^- = 0$, $u^+ = 1$, $a = \overline{u} \underline{u}$, and $b = \underline{u}$, we get $u(\underline{u}, \overline{u}) = \alpha_H \cdot (\overline{u} \underline{u}) + \underline{u} = \alpha_H \cdot \overline{u} + (1 \alpha_H) \cdot \underline{u}.$
- This formula was first proposed by a future Nobelist Leo Hurwicz.
- It is known as the Hurwicz optimism-pessimism criterion

Is "No Trade Theorem" Really a Paradox

- One of the challenges in foundations of finance is the so-called "no trade theorem" paradox:
 - if a trader wants to sell a stock, he/she believes that this stock will go down;
 - however, another trader is willing to buy it;
 - this means that this other expert believes that the stock will go up.
- The fact that equally good experts have different beliefs should dissuade the first expert from selling.
- Thus, trades should be very rare.
- However, in reality, trades are ubiquitous; how can we explain this?

Our Explanation

- Let s be the current cost of the stock. Let m be the mean and σ st. dev. of the (discounted) future gain g.
- ullet Let M be the person's initial amount of money.
- Buying a stock is beneficial if it increases the expected utility, i.e., if $E[\sqrt{M-s+g}] > \sqrt{M}$.
- For small s, this is equivalent to $M > M_0 \stackrel{\text{def}}{=} \frac{(m-s)^2 + \sigma^2}{2(m-s)}$.
- So, folks with $M > M_0$ benefit from buying it.

• People with $M < M_0$ benefit from selling it.

- This explains the ubiquity of trading.
- The larger the risk σ , the larger the threshold M_0 .
- This explains why depressed people (with lower equivalent value of $M=u^2$) are more risk-averse.

Why Prices for Buying and Selling Objects Are Different

- Intuitively, we should decide, for ourselves, how much each object is worth to us.
- This worth amount should be the largest amount that we should be willing to pay if we are buying this object.
- This same amount should be the smallest amount for which we should agree to sell this objects.
- However, in practice, the buying and selling prices are different.

Our Explanation

- The main reason is that people are not clear on the value of each object.
- At best, they have a range $[\underline{u}, \overline{u}]$ of possible values of this object's worth.
- According to Hurwicz formula, when we buy, we gain the value $u_b = \alpha_H \cdot \overline{u} + (1 \alpha_H) \cdot \underline{u}$.
- On the other hand, if we already own this object and we sell it, then our loss is between $-\overline{u}$ and $-\underline{u}$.
- The Hurwicz criterion estimates the resulting value as $-u_s$, where $u_s = \alpha_H \cdot \underline{u} + (1 \alpha_H) \cdot \overline{u}$.
- In the general case, the values u_b and u_s are indeed different.

Explaining "Telescoping Effect" – That Time Perception Is Biased

- People usually underestimate time passed since distant events, and overestimate for recent events.
- Time t is related to utility via discounting: $u = u_0 \cdot q^t$.
- This utility value is always in $[0, u_0]$.
- We only know utility u with some accuracy ε .
- Instead of the original value $u = u_0 \cdot q^t$, we only know that $u \in [u_0 \cdot q^t \varepsilon, u_0 \cdot q^t + \varepsilon]$.
- For small t, $u_0 \cdot q^t \approx u_0$, so $u_0 \cdot q^t + \varepsilon > u_0$.
- Thus, we have the interval $[u_0 \cdot q^t \varepsilon, u_0]$, and Hurwicz method leads to the value

$$u(t) = \alpha_H \cdot u_0 + (1 - \alpha_H) \cdot u_0 \cdot (q^t - \varepsilon).$$

- For $t \to 0$, $u_0 \cdot q^t \to u_0$ while $u(t) \to u_0 (1 \alpha_H) \cdot \varepsilon < u_0$.
- Thus, for small t, we have $u(t) < u_0 \cdot q^t$.
- The perceived time \widetilde{t} comes from $u(t) = u_0 \cdot q^{\widetilde{t}}$, so $\widetilde{t} > t$.
- For large t, we have $u_0 \cdot q^t \varepsilon < 0$, so $u \in [0, u_0 \cdot q^t + \varepsilon]$.

$$u(t) = \alpha_H \cdot (u_0 \cdot q^t + \varepsilon).$$

• Hurwicz methods leads to the value

- For $t \to \infty$, $u_0 \cdot q^t \to 0$ while $u(t) \to \alpha_H \cdot \varepsilon > 0$.
- Thus, for large t, we have $u(t) > u_0 \cdot q^t$.
- The perceived time \widetilde{t} comes from $u(t) = u_0 \cdot q^{\widetilde{t}}$, so $\widetilde{t} < t$.
- This explains the telescoping effect.

Future Plans : Theory

- In terms of theoretical analysis, what we have done so far is based on *deterministic* decision making.
- In practice, our decisions are often probabilistic.
- In the same situation, we may select different alternatives, with different probabilities.
- This situation has been analyzed in decision theory by a Nobelist D. McFadden.
- However, his analysis assumes that we know the exact gains related to different alternatives.
- In practice, we usually know the expected gains only with some uncertainty.
- McFadden's analysis to the case of uncertainty.

Future Plans : Explanations

• So, our main theoretical research would be to extend

- First, there are still seemingly counterintuitive aspects of human behavior that need explaining; e.g.:
- an often cited phrase that giving is better than receiving
- seems to be inconsistent with the usual utilitarian models of this behavior.

• Second, the Hurwicz analysis does not explain why

- some people are more optimistic.
- It is therefore desirable to try to understand this.
 For this purpose, we will analyze which type of behav-
- ior works best in different situations.Finally, it is desirable to look:
 - not just at the *results* of human decision making,
 - but also at *procedures* that humans use to reach their results.
- For example, as part of these procedures, humans perform some non-traditional approximate computations.
- We plan to analyze how these unusual procedures can be explained by decision making under uncertainty.

Acknowledgements

This work was supported in part by the US National Science Foundation via grant HRD-1242122 (Cyber-ShARE).