When Revolutions Happen: Algebraic Explanation

Julio Urenda^{1,2}, and Vladik Kreinovich¹

¹Department of Mathematical Sciences, ²Department of Computer Science University of Texas at El Paso

500 W. University El Paso, TX 79968, USA jcurenda@utep.edu, vladik@utep.edu

1. When Revolutions Happen

- People usually believe that revolutions happen when life under the old regime becomes intolerable.
- However, a historical analysis shows that the usual understanding is wrong.
- Most revolutions happen *not* when the situation is at its worst.
- They usually happen when the situation has been improving for some time and then suddenly gets worse.
- Although, by the way, it never gets as bad as it was before the improvement started.

2. How Can We Explain This?

- Experiments show that in most situations, people act rationally:
 - the more their needs are satisfied, in general,
 - the happier they are.
- So why right before the revolution:
 - when the level of living is higher (often much higher)
 than in the recent past,
 - people are so much less happy that they start a revolution?
- How can we explain this unexpected (and somewhat counterintuitive) behavior?

3. Traditional Decision Theory: A Brief Reminder

- In traditional decision theory, people's preferences are described by numerical values called *utilities*.
- The actions of a person are determined:
 - not just by this person's current level of satisfaction
 as described by the current utility value u₀,
 but also by the expected future utility values u₁,
 u₂, etc.
- If we have m dollars, we can place it in a bank and get $(1+\alpha)^t \cdot m$ at time t, where α is the interest rate.
- Thus, \$1 at time t is equivalent to q^t dollars now, where $q \stackrel{\text{def}}{=} \frac{1}{1+\alpha}$.
- So, if we get m_0 now, m_1 in the next year, etc., this is equivalent to getting the following amount now:

$$m_0+q\cdot m_1+q^2\cdot m_2+\ldots$$

4. This General Approach Requires Extrapolation

- The future amounts are based on extrapolation:
 - we select a family of functions characterized by a few parameters $u_t = f(p_1, \ldots, p_n, t)$,
 - then we find the values $\widehat{p}_1, \ldots, \widehat{p}_n$ of the parameters that best fit the observed data u_0, u_{-1}, u_{-2} , etc.,
 - and then we use these values to predict future values as $f(\widehat{p}_1, \dots, \widehat{p}_n, t)$.
- Let's use models that linearly depend on p_i :
 - then, matching parameters to data means easy-tosolve solving systems of linear equations,
- while solving systems of nonlinear equations is, in general, NP-hard.
- Thus, we consider models $u_t = \sum_{i=1}^n p_i \cdot f_i(t)$, where $f_i(t)$ are given functions, and p_i are parameters.

5. Which Basis Functions fi(t) Should We Choose?

- Most transitions are smooth; so, it's reasonable to require that all the functions $f_i(t)$ are smooth.
- Another reasonable requirement is related to the fact that the numerical value of time depends:
 - on the choice of a measuring unit years or months,
 and on the choice of a starting time.
- If we change a measuring unit by a new one which is a times smaller, then $t \to a \cdot t$.
- If we replace the original starting point with the new one, b units in the past $t \to t + b$.
- The general formulas for extrapolation should not depend on such an arbitrary things as:
- selecting a unit of time or
- selecting a starting point.
- It is therefore reasonable to assume that the approximating family $\left\{\sum_{i=1}^{n} p_i \cdot f_i(t)\right\}$ will not change:

$$\left\{ \sum_{i=1}^{n} p_i \cdot f_i(a \cdot t) \right\}_{p_1,\dots,p_n} = \left\{ \sum_{i=1}^{n} p_i \cdot f_i(t+b) \right\}_{p_1,\dots,p_n} = \left\{ \sum_{i=1}^{n} p_i \cdot f_i(t) \right\}_{p_1,\dots,p_n}.$$

- It turns out that under these conditions, all the basic functions are polynomials.
- So, all their linear combinations are polynomials.
- Thus, it is reasonable to approximate the actual history by a polynomial.

6. Two Simple Situations

- We will compare two simple situations:
 - a situation in which the level of living is consistently bad $u_0 = u_{-1} = \ldots = u_{-k} = \ldots = c_1$ for small c_1 ;
 - a situation in which the level of living used to be much better, but now somewhat decreased:

$$u_{-1} = u_{-2} = \ldots = c_+ \text{ but } u_0 = c_- < c_+.$$

- In the first situation, of course, a reasonable extrapolation should lead to the exact same small value $u_0 = c$.
- Thus, the overall utility is equal to

$$u_0 + q \cdot u_1 + \ldots = c \cdot (1 + q + q^2 + \ldots) = \frac{c}{1 - q}.$$

- But what to expect in the second situation?
- Let us start our analysis with the simplest possible linear extrapolation.

7. Linear Extrapolation

- In this case, we make our future predictions based only on two utility values: u_0 and u_{-1} .
- Since $u_0 < u_{-1}$, we get a linear decreasing function.
- Its values tend to $-\infty$ as the time t increases.
- \bullet So, when q is close to 1, the corresponding value

$$u_0 + q \cdot u_1 + \ldots \approx u_0 + u_1 + \ldots$$
 becomes negative.

• This explains why in the second situation, the revolution is much more probable.

8. What About More Realistic Approximations?

- One may think that the above explanation is caused by our oversimplification of the extrapolation model.
- Of course, linear extrapolation is a very crude and oversimplified idea.
- What happens if we use higher degree polynomials for extrapolation?
- ullet Let us assume that for extrapolation, we use polynomials of order d.
- The corresponding family of polynomials have d_1 parameters, so we can fit d+1 values $u_0, u_{-1}, \ldots, u_{-d}$.
- Let us find the polynomial P(t) of degree d that fits these values: $P(0) = c_-, P(-1) = \ldots = P(-d) = c_+.$

Realistic Approximations (cont-d)

- For $Q(t) \stackrel{\text{def}}{=} P(t) c_+$, we have $Q(-d) = \ldots = Q(-1) = 0$ and $Q(0) = c_- c_+$.
- This polynomial of degree d has d roots $t = -1, \ldots, t = -d$, so $Q(t) = C \cdot (t+1) \cdot (t+2) \cdot \ldots \cdot (t+d)$, and

$$Q(t) = c_{+} + (c_{-} - c_{+}) \cdot \frac{(t+1) \cdot (t+2) \cdot \dots \cdot (t+d)}{1 \cdot 2 \cdot \dots \cdot d}.$$

- Since $c_- < c_+$, this value is negative and tends to $-\infty$ as the time t increases.
- In comparison with the linear extrapolation case, it tends to $-\infty$ even faster: as t^d .
- So, the revolution phenomenon can be explained no matter what degree of extrapolation we use.

9. Discussion

- We have explained the seemingly counterintuitive revolution phenomenon.
- Based on our analysis, we can make auxiliary conclusions (which also fit well with common sense).
- Revolutions only happen if people care about the future.
- If they don't, if $q \approx 0$, people are happy with their present-day level of living.
- The more into the past the people go in their analysis, the more probable it is that they will revolt.
- People who do not know their history are less prone to revolutions than people who do.

10. Acknowledgments

This work was supported in part by the US National Science Foundation via grant HRD-1242122 (Cyber-ShARE).

11. Bibliography

- R. B. Cialdini, *Influence: Science and Practice*, Pearson, Boston, 2009.
- J. C. Davies, "Towards a theory of revolution", *American Sociological Review*, 1962, Vol. 27, pp. 5–19.
- J. C. Davies, "The J-curve of rising and declining satisfactions as a cause of some great revolutions and a contained rebellion", In: H. D. Graham and T. R. Gurr (eds.), Violence in America, Signet Books, New York, 1969.