How Physics Can Influence What Is Computable: Taking Into Account that We Process Physical Data and that We Can Use Non-Standard Physical Phenomena to Process This Data

Olga Kosheleva and Vladik Kreinovich University of Texas at El Paso, El Paso, TX 79968, USA olgak@utep.edu, vladik@utep.edu Part I: Taking Into . . . How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is. Part III: Physical and . . . Part IV: Relation with Proofs Home Page **>>** Page 1 of 57 Go Back Full Screen Close Quit

Part I Taking Into Account that We Process Physical Data

Part I: Taking Into . . . How to Formalize the.. Negative Results . . .

Finding Roots Part II: How to Take . . .

No Physical Theory Is . . Part III: Physical and . .

Part IV: Relation with . . .

Proofs

Title Page 44 **>>** 

Home Page

Page 2 of 57

Go Back

Full Screen

Close

Quit

### 1. Computations with Real Numbers: Reminder

- $\bullet$  From the physical viewpoint, real numbers x describe values of different quantities.
- We get values of real numbers by measurements.
- Measurements are never 100% accurate, so after a measurement, we get an approximate value  $r_k$  of x.
- $\bullet$  In principle, we can measure x with higher and higher accuracy.
- So, from the computational viewpoint, a real number is a sequence of rational numbers  $r_k$  for which, e.g.,

$$|x - r_k| \le 2^{-k}.$$

- By an algorithm processing real numbers, we mean an algorithm using  $r_k$  as an "oracle" (subroutine).
- This is how computations with real numbers are defined in *computable analysis*.

Part I: Taking Into . . . How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . . Proofs Home Page Title Page **>>** Page 3 of 57 Go Back Full Screen Close Quit

- No algorithm is possible that, given two numbers x and y, would check whether x = y.
- Similarly, we can define a computable function f(x) from real numbers to real numbers as a mapping that:
  - given an integer n, a rational number  $x_m$  and its accuracy  $2^{-m}$ ,
  - produces  $y_n$  which is  $2^{-n}$ -close to all values f(x) with  $d(x, x_m) \leq 2^{-m}$  (or nothing)

so that for every x and for each desired accuracy n, there is an m for which a  $y_n$  is produced.

- We can similarly define a computable function f(x) on a computable compact set K.
- No algorithm is possible that, given f, returns x s.t.  $f(x) = \max_{y \in K} f(y)$ . (The max itself is computable.)



# 3. From the Physicists' Viewpoint, These Negative Results Seem Rather Theoretical

- In mathematics, if two numbers coincide up to 13 digits, they may still turn to be different.
- For example, they may be 1 and  $1 + 10^{-100}$ .
- In physics, if two quantities coincide up to a very high accuracy, it is a good indication that they are equal:
  - if an experimentally value is very close to the theoretical prediction,
  - this means that this theory is (triumphantly) true.
- This is how General Relativity was confirmed.
- This is how physicists realized that light is formed of electromagnetic waves: their speeds are very close.



#### 4. How Physicists Argue

- In math, if two numbers coincide up to 13 digits, they may still turn to be different: e.g., 1 and  $1 + 10^{-100}$ .
- In physics, if two quantities coincide up to a very high accuracy, it is a good indication that they are equal.
- A typical physicist argument is that:
  - while numbers like  $1 + 10^{-100}$  (or  $c \cdot (1 + 10^{-100})$ ) are, in principle, possible,
  - they are abnormal (not typical).
- In physics, second order terms like  $a \cdot \Delta x^2$  of the Taylor series can be ignored if  $\Delta x$  is small, since:
  - while abnormally high values of a (e.g.,  $a = 10^{40}$ ) are mathematically possible,
  - typical (= not abnormal) values appearing in physical equations are usually of reasonable size.



# 5. How to Formalize the Physicist's Intuition of Physically Meaningful Values: Main Idea

- To some physicist, all the values of a coefficient a above 10 are abnormal.
- To another one, who is more cautious, all the values above 10 000 are abnormal.
- For every physicist, there is a value n such that all value above n are abnormal.
- This argument can be generalized as a following property of the set  $\mathcal{T}$  of all physically meaningful elements.
- Suppose that we have a monotonically decreasing sequence of sets  $A_1 \supseteq A_2 \supseteq \ldots$  for which  $\bigcap_n A_n = \emptyset$ .
- In the above example,  $A_n$  is the set of all numbers  $\geq n$ .
- Then, there exists an integer N for which  $\mathcal{T} \cap A_N = \emptyset$ .

How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . . Proofs Home Page Title Page **>>** Page 7 of 57 Go Back Full Screen Close Quit

## 6. How to Formalize the Physicist's Intuition: Resulting Definition

- **Definition.** We thus say that  $\mathcal{T}$  is a set of physically meaningful elements if:
  - for every definable decreasing sequence  $\{A_n\}$  for which  $\bigcap_n A_n = \emptyset$ ,
  - there exists an N for which  $\mathcal{T} \cap A_N = \emptyset$ .
- $\bullet$  Comment. Of course, to make this definition precise,
  - we must restrict definability to a *subset* of properties.
  - so that the resulting notion of definability will be defined in ZFC itself.

How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . . Part III: Physical and . . Part IV: Relation with . . . Proofs Home Page Title Page **>>** Page 8 of 57 Go Back Full Screen Close Quit

- *Known:* equality of real numbers is undecidable.
- For physically meaningful real numbers, however, a deciding algorithm *is* possible:
  - for every set  $\mathcal{T} \subseteq \mathbb{R}^2$  which consists of physically meaningful pairs (x, y) of real numbers,
  - there exists an algorithm deciding whether x = y.
- Proof: We can take  $A_n = \{(x,y) : 0 < |x-y| < 2^{-n}\}$ . The intersection of all these sets is empty.
- Hence,  $\mathcal{T}$  has no elements from  $\bigcap_{n=1}^{N_A} A_n = A_{N_A}$ .
- Thus, for each  $(x, y) \in \mathcal{T}$ , x = y or  $|x y| \ge 2^{-N_A}$ .
- We can detect this by taking  $2^{-(N_A+3)}$ -approximations x' and y' to x and y. Q.E.D.

How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is.. Part III: Physical and . . Part IV: Relation with . . Proofs Home Page Title Page **>>** Page 9 of 57 Go Back Full Screen Close

Quit

### 8. Finding Roots

- In general, it is not possible, given a f-n f(x) attaining negative and positive values, to compute its root.
- This becomes possible if we restrict ourselves to physically meaningful functions:
- Let K be a computable compact.
- Let X be the set of all functions  $f: K \to \mathbb{R}$  that attain 0 value somewhere on K. Then:
  - for every set  $\mathcal{T} \subseteq X$  consisting of physically meaningful functions and for every  $\varepsilon > 0$ ,
  - there is an algorithm that, given a f-n  $f \in \mathcal{T}$ , computes an  $\varepsilon$ -approximation to the set of roots

$$R \stackrel{\text{def}}{=} \{x : f(x) = 0\}.$$

• In particular, we can compute an  $\varepsilon$ -approximation to one of the roots.



### 9. Optimization

- In general, it is not algorithmically possible to find x where f(x) attains maximum.
- Let K be a computable compact. Let X be the set of all functions  $f: K \to \mathbb{R}$ . Then:
  - for every set  $\mathcal{T} \subseteq X$  consisting of physically meaningful functions and for every  $\varepsilon > 0$ ,
  - there is an algorithm that, given a f-n  $f \in \mathcal{T}$ , computes an  $\varepsilon$ -approx. to  $S = \left\{ x : f(x) = \max_{y} f(y) \right\}$ .
- In particular, we can compute an approximation to an individual  $x \in S$ .
- Reduction to roots:  $f(x) = \max_{y} f(y)$  iff g(x) = 0, where  $g(x) \stackrel{\text{def}}{=} f(x) - \max_{y} f(y)$ .



### 10. Computing Fixed Points

- In general, it is not possible to compute all the fixed points of a given computable function f(x).
- Let K be a computable compact. Let X be the set of all functions  $f: K \to K$ . Then:
  - for every set  $\mathcal{T} \subseteq X$  consisting of physically meaningful functions and for every  $\varepsilon > 0$ ,
  - there is an algorithm that, given a f-n  $f \in \mathcal{T}$ , computes an  $\varepsilon$ -approximation to the set  $\{x : f(x) = x\}$ .
- In particular, we can compute an approximation to an individual fixed point.
- Reduction to roots: f(x) = x iff g(x) = 0, where  $g(x) \stackrel{\text{def}}{=} d(f(x), x)$ .



#### 11. Computing Limits

- In general: it is not algorithmically possible to find a limit  $\lim a_n$  of a convergent computable sequence.
- Let K be a computable compact. Let X be the set of all convergent sequences  $a = \{a_n\}, a_n \in K$ . Then:
  - for every set  $\mathcal{T} \subseteq X$  consisting of physically meaningful functions and for every  $\varepsilon > 0$ ,
  - there exists an algorithm that, given a sequence  $a \in \mathcal{T}$ , computes its limit with accuracy  $\varepsilon$ .
- *Use:* this enables us to compute limits of iterations and sums of Taylor series (frequent in physics).
- Main idea: for every  $\varepsilon > 0$  there exists  $\delta > 0$  such that when  $|a_n a_{n-1}| \le \delta$ , then  $|a_n \lim a_n| \le \varepsilon$ .
- *Intuitively:* we stop when two consequent iterations are close to each other.



Part II How to Take into Account that We Can Use Non-Standard Physical Phenomena to Process Data

Part I: Taking Into . . . How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . . Proofs Home Page Title Page **>>** 

Page 14 of 57

Go Back

Full Screen

Close

Quit

### 12. Solving NP-Complete Problems Is Important

- In practice, we often need to find a solution that satisfies a given set of constraints.
- At a minimum, we need to check whether such a solution is possible.
- Once we have a candidate, we can feasibly check whether this candidate satisfies all the constraints.
- In theoretical computer science, "feasibly" is usually interpreted as computable in polynomial time.
- The class of all such problems is called NP.
- Example: satisfiability checking whether a formula like  $(v_1 \lor \neg v_2 \lor v_3) \& (v_4 \lor \neg v_2 \lor \neg v_5) \& \dots$  can be true.
- Each problem from the class NP can be algorithmically solved by trying all possible candidates.



### 13. NP-Complete Problems (cont-d)

- For example, we can try all  $2^n$  possible combinations of true-or-false values  $v_1, \ldots, v_n$ .
- For medium-size inputs, e.g., for  $n \approx 300$ , the resulting time  $2^n$  is larger than the lifetime of the Universe.
- So, these exhaustive search algorithms are not practically feasible.
- It is not known whether problems from the class NP can be solved feasibly (i.e., in polynomial time).
- This is the famous open problem  $P \stackrel{?}{=} NP$ .
- We know that some problems are *NP-complete*: every problem from NP can be reduced to it.
- So, it is very important to be able to efficiently solve even one NP-hard problem.



# 14. Can Non-Standard Physics Speed Up the Solution of NP-Complete Problems?

- NP-complete means difficult to solve on computers based on the usual physical techniques.
- A natural question is: can the use of non-standard physics speed up the solution of these problems?
- This question has been analyzed for several specific physical theories, e.g.:
  - for quantum field theory,
  - for cosmological solutions with wormholes and/or casual anomalies.
- So, a scheme based on a theory may not work.



- In the history of physics,
  - always new observations appear
  - which are not fully consistent with the original theory.
- For example, Newton's physics was replaced by quantum and relativistic theories.
- Many physicists believe that every physical theory is approximate.
- For each theory T, inevitably new observations will surface which require a modification of T.
- Let us analyze how this idea affects computations.

Part I: Taking Into...

How to Formalize the...

Negative Results...

Finding Roots

Part II: How to Take...

Part II: I

No Physical Theory Is...
Part III: Physical and...

Part IV: Relation with . . .

Proofs

Home Page

Title Page

•

Page 18 of 57

Go Back

Full Screen

Full Screen

Close

Quit

## 16. No Physical Theory Is Perfect: How to Formalize This Idea

- Statement: for every theory, eventually there will be observations which violate this theory.
- To formalize this statement, we need to formalize what are *observations* and what is a *theory*.
- Most sensors already produce *observation* in the computer-readable form, as a sequence of 0s and 1s.
- Let  $\omega_i$  be the bit result of an experiment whose description is i.
- Thus, all past and future observations form a (potentially) infinite sequence  $\omega = \omega_1 \omega_2 \dots$  of 0s and 1s.
- A physical *theory* may be very complex.
- All we care about is which sequences of observations  $\omega$  are consistent with this theory and which are not.

How to Formalize the . . Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with Proofs Home Page Title Page **>>** Page 19 of 57 Go Back Full Screen Close Quit

- So, a physical theory T can be defined as the set of all sequences  $\omega$  which are consistent with this theory.
- A physical theory must have at least one possible sequence of observations:  $T \neq \emptyset$ .
- A theory must be described by a finite sequence of symbols: the set T must be definable.
- How can we check that an infinite sequence  $\omega = \omega_1 \omega_2 \dots$  is consistent with the theory?
- The only way is check that for every n, the sequence  $\omega_1 \dots \omega_n$  is consistent with T; so:

$$\forall n \,\exists \omega^{(n)} \in T \,(\omega_1^{(n)} \ldots \omega_n^{(n)} = \omega_1 \ldots \omega_n) \Rightarrow \omega \in T.$$

• In mathematical terms, this means that T is closed in the Baire metric  $d(\omega, \omega') \stackrel{\text{def}}{=} 2^{-N(\omega, \omega')}$ , where

$$N(\omega, \omega') \stackrel{\text{def}}{=} \max\{k : \omega_1 \dots \omega_k = \omega'_1 \dots \omega'_k\}.$$

How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . Proofs Home Page Title Page **>>** Page 20 of 57 Go Back Full Screen Close Quit

### 18. What Is a Physical Theory: Definition

- A theory must predict something new.
- So, for every sequence  $\omega_1 \dots \omega_n$  consistent with T, there is a continuation which does not belong to T.
- $\bullet$  In mathematical terms, T is nowhere dense.
- By a physical theory, we mean a non-empty closed nowhere dense definable set T.
- A sequence  $\omega$  is consistent with the no-perfect-theory principle if it does not belong to any physical theory.
- In precise terms,  $\omega$  does not belong to the union of all definable closed nowhere dense set.
- There are countably many definable set, so this union is  $meager (= Baire first \ category)$ .
- Thus, due to Baire Theorem, such sequences  $\omega$  exist.

How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . Proofs Home Page Title Page **>>** Page 21 of 57 Go Back Full Screen Close Quit

## 19. How to Represent Instances of an NP-Complete Problem

- For each NP-complete problem  $\mathcal{P}$ , its instances are sequences of symbols.
- In the computer, each such sequence is represented as a sequence of 0s and 1s.
- We can append 1 in front and interpret this sequence as a binary code of a natural number i.
- In principle, not all natural numbers i correspond to instances of a problem  $\mathcal{P}$ .
- We will denote the set of all natural numbers which correspond to such instances by  $S_{\mathcal{P}}$ .
- For each  $i \in S_{\mathcal{P}}$ , we denote the correct answer (true or false) to the *i*-th instance of the problem  $\mathcal{P}$  by  $s_{\mathcal{P},i}$ .



### 20. What We Mean by Using Physical Observations in Computations

- In addition to performing computations, our computational device can:
  - produce a scheme i for an experiment, and then
  - use the result  $\omega_i$  of this experiment in future computations.
- In other words, given an integer i, we can produce  $\omega_i$ .
- In precise terms, the use of physical observations in computations means that use  $\omega$  as an *oracle*.



#### 21. Main Result

- A ph-algorithm  $\mathcal{A}$  is an algorithm that uses an oracle  $\omega$  consistent with the no-perfect-theory principle.
- The result of applying an algorithm  $\mathcal{A}$  using  $\omega$  to an input i will be denoted by  $\mathcal{A}(\omega, i)$ .
- We say that a feasible ph-algorithm  $\mathcal{A}$  solves almost all instances of an NP-complete problem  $\mathcal{P}$  if:

$$\forall \varepsilon_{>0} \, \forall n \, \exists N_{\geq n} \, \left( \frac{\#\{i \leq N : i \in S_{\mathcal{P}} \, \& \, \mathcal{A}(\omega, i) = s_{\mathcal{P}, i}\}}{\#\{i \leq N : i \in S_{\mathcal{P}}\}} > 1 - \varepsilon \right).$$

- Restriction to sufficiently long inputs  $N \geq n$  makes sense: for short inputs, we can do exhaustive search.
- Theorem. For every NP-complete problem  $\mathcal{P}$ , there is a feasible ph-alg. A solving almost all instances of  $\mathcal{P}$ .



- Our result is the best possible, in the sense that the use of physical observations cannot solve *all* instances:
- Proposition. If  $P \neq NP$ , then no feasible ph-algorithm A can solve all instances of P.
- Can we prove the result for all N starting with some  $N_0$ ?
- We say that a feasible ph-algorithm  $\mathcal{A}$   $\delta$ -solves  $\mathcal{P}$  if

$$\exists N_0 \,\forall N \geq N_0 \, \left( \frac{\#\{i \leq N : i \in S_{\mathcal{P}} \,\&\, \mathcal{A}(\omega, i) = s_{\mathcal{P}, i}\}}{\#\{i \leq N : i \in S_{\mathcal{P}}\}} > \delta \right).$$

- Proposition. For every NP-complete problem  $\mathcal{P}$  and for every  $\delta > 0$ :
  - if there exists a feasible ph-algorithm  $\mathcal{A}$  that  $\delta$ solves  $\mathcal{P}$ ,
  - then there is a feasible algorithm  $\mathcal{A}'$  that also  $\delta$ -solves  $\mathcal{P}$ .

Part I: Taking Into . . . How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . . Proofs Home Page Title Page **>>** Page 25 of 57 Go Back Full Screen Close Quit

Part III
Physical and Computational
Consequences

Part I: Taking Into . . . How to Formalize the.. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . . Part IV: Relation with . . . Proofs Home Page Title Page **>>** Page 26 of 57 Go Back Full Screen Close Quit

- What is physical induction: a property P is satisfied in the first N experiments, then it is satisfied always.
- $\bullet$  Comment: N should be sufficiently large.
- Theorem:  $\forall \mathcal{T} \exists N \text{ s.t.}$  if for  $o \in \mathcal{T}$ , P(o) is satisfied in the first N experiments, then P(o) is satisfied always.
- Notation:  $s \stackrel{\text{def}}{=} s_1 s_2 \dots$ , where:
  - $s_i = T$  if P(o) holds in the *i*-th experiment, and
  - $s_i = F$  if  $\neg P(o)$  holds in the *i*-th experiment.
- Proof:  $A_n \stackrel{\text{def}}{=} \{ o : s_1 = \ldots = s_n = T \& \exists m (s_m = F) \};$ then  $A_n \supseteq A_{n+1}$  and  $\cup A_n = \emptyset$  so  $\exists N (A_N \cap \mathcal{T} = \emptyset).$
- Meaning of  $A_N \cap \mathcal{T} = \emptyset$ : if  $o \in \mathcal{T}$  and  $s_1 = \ldots = s_N = T$ , then  $\neg \exists m (s_m = F)$ , i.e.,  $\forall m (s_m = T)$ .

How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is.. Part III: Physical and . . Part IV: Relation with . . Proofs Home Page Title Page **>>** Page 27 of 57 Go Back Full Screen Close Quit

- - Main *objectives* of science:
    - quaranteed estimates for physical quantities;
    - quaranteed predictions for these quantities.
  - *Problem:* estimation and prediction are ill-posed.
  - Example:
    - measurement devices are inertial;
    - hence suppress high frequencies  $\omega$ ;
    - so  $\varphi(x)$  and  $\varphi(x) + \sin(\omega \cdot t)$  are indistinguishable.
  - Existing approaches:
    - statistical regularization (filtering);
    - Tikhonov regularization (e.g.,  $|\dot{x}| \leq \Delta$ );
    - expert-based regularization.
  - Main problem: no guarantee.

Part I: Taking Into . . . How to Formalize the.

Negative Results . . .

Finding Roots Part II: How to Take . . .

No Physical Theory Is . .

Part III: Physical and . .

Part IV: Relation with . . .

Proofs Home Page

Title Page

**>>** 

Page 28 of 57

Go Back

Full Screen

Close

Quit

- State estimation an ill-posed problem:
  - Measurement f: state  $s \in S \to \text{observation } r = f(s) \in R$ .
  - In principle, we can reconstruct  $r \to s$ : as  $s = f^{-1}(r)$ .
  - Problem: small changes in r can lead to huge changes in s ( $f^{-1}$  not continuous).
- Theorem:
  - Let S be a definably separable metric space.
  - Let  $\mathcal{T}$  be a set of physically meaningful elements of S.
  - Let  $f: S \to R$  be a continuous 1-1 function.
  - Then, the inverse mapping  $f^{-1}: R \to S$  is *continuous* for every  $r \in f(\mathcal{T})$ .

Part I: Taking Into...

How to Formalize the...

Negative Results...

Finding Roots

Part II: How to Take...

No Physical Theory Is...
Part III: Physical and...

Part IV: Relation with . . .

Proofs

Home Page

Title Page





Page 29 of 57

Go Back

Full Screen

Close

Quit

# 26. Everything Is Related: Einstein-Podolsky-Rosen (EPR) Paradox

- Due to *Relativity Theory*, two spatially separated simultaneous events cannot influence each other.
- Einstein, Podolsky, and Rosen intended to show that in quantum physics, such influence is possible.
- In formal terms, let x and x' be measured values at these two events.
- Independence means that possible values of x do not depend on x', i.e.,  $\mathcal{T} = X \times X'$  for some X and X'.
- Physical induction implies that the pair (x, x') belongs to a set S of physically meaningful pairs.
- Theorem. A set  $\mathcal{T}$  os physically meaningful pairs cannot be represented as  $X \times X'$ .



• Thus, everything is related – but we probably can't use this relation to pass information ( $\mathcal{T}$  isn't computable).

Part I: Taking Into . . . How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is.. Part III: Physical and . . . Part IV: Relation with . . . Proofs Home Page Title Page **>>** Page 31 of 57 Go Back Full Screen Close Quit

#### 27. When to Stop an Iterative Algorithm?

- Situation in numerical mathematics:
  - we often know an iterative process whose results  $x_k$  are known to converge to the desired solution x,
  - but we do not know when to stop to guarantee that

$$d_X(x_k, x) \le \varepsilon.$$

- Heuristic approach: stop when  $d_X(x_k, x_{k+1}) \leq \delta$  for some  $\delta > 0$ .
- Example: in physics, if 2nd order terms are small, we use the linear expression as an approximation.



- Let  $\{x_k\} \in \mathcal{T}$ , k be an integer, and  $\varepsilon > 0$  a real number.
- We say that  $x_k$  is  $\varepsilon$ -accurate if  $d_X(x_k, \lim x_p) \leq \varepsilon$ .
- Let  $d \ge 1$  be an integer.
- By a stopping criterion, we mean a function  $c: X^d \to R_0^+$  that satisfies the following two properties:
  - If  $\{x_k\} \in \mathcal{T}$ , then  $c(x_k, \ldots, x_{k+d-1}) \to 0$ .
  - If for some  $\{x_n\} \in \mathcal{T}$  and  $k, c(x_k, \dots, x_{k+d-1}) = 0$ , then  $x_k = \dots = x_{k+d-1} = \lim x_p$ .
- Result: Let c be a stopping criterion. Then, for every  $\varepsilon > 0$ , there exists a  $\delta > 0$  such that
  - if  $c(x_k, \ldots, x_{k+d-1}) \leq \delta$ , and the sequence  $\{x_n\}$  is physically meaningful,
  - then  $x_k$  is  $\varepsilon$ -accurate.

How to Formalize the...

Negative Results...

Finding Roots

Part I: Taking Into . . .

Part II: How to Take...

No Physical Theory Is...
Part III: Physical and...

Part IV: Relation with . . .

Proofs

Home Page

Title Page





Page 33 of 57

Go Back

Full Screen

Close

Close

Quit

Part IV
Relation with Randomness

Part I: Taking Into... How to Formalize the.. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . . Proofs Home Page Title Page **>>** 

Page 34 of 57

Go Back

Full Screen

Close

Quit

#### 29. Towards Relation with Randomness

- If a sequence s is random, it satisfies all the probability laws such as the law of large numbers.
- If a sequence satisfies all probability laws, then for all practical purposes we can consider it random.
- Thus, we can define a sequence to be random if it satisfies all probability laws.
- A probability law is a statement S which is true with probability 1: P(S) = 1.
- So, a sequence is random if it belongs to all definable sets of measure 1.
- A sequence belongs to a set of measure 1 iff it does not belong to its complement C = -S with P(C) = 0.
- So, a sequence is random if it does not belong to any definable set of measure 0.



## 30. Randomness and Kolmogorov Complexity

- Different definabilities lead to different randomness.
- When definable means computable, randomness can be described in terms of Kolmogorov complexity

$$K(x) \stackrel{\text{def}}{=} \min\{\text{len}(p) : p \text{ generates } x\}.$$

• Crudely speaking, an infinite string  $s = s_1 s_2 \dots$  is random if, for some constant C > 0, we have

$$\forall n (K(s_1 \dots s_n) \geq n - C).$$

• Indeed, if a sequence  $s_1 ldots s_n$  is truly random, then the only way to generate it is to explicitly print it:

$$print(s_1 \dots s_n).$$

• In contrast, a sequence like 0101...01 generated by a short program is clearly not random.

How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . Proofs Home Page Title Page **>>** Page 36 of 57 Go Back Full Screen Close Quit

## 31. From Kolmogorov-Martin-Löf Theoretical Randomness to a More Physical One

- The above definition means that (definable) events with probability 0 cannot happen.
- In practice, physicists also assume that events with a *very small* probability cannot happen.
- For example, a kettle on a cold stove will not boil by itself but the probability is non-zero.
- If a coin falls head 100 times in a row, any reasonable person will conclude that this coin is not fair.
- It is not possible to formalize this idea by simply setting a threshold  $p_0 > 0$  below which events are not possible.
- Indeed, then, for N for which  $2^{-N} < p_0$ , no sequence of N heads or tails would be possible at all.



# 32. From Kolmogorov-Martin-Löf Theoretical Randomness to a More Physical One (cont-d)

- We cannot have a universal threshold  $p_0$  such that events with probability  $\leq p_0$  cannot happen.
- However, we know that:
  - for each decreasing  $(A_n \supseteq A_{n+1})$  sequence of properties  $A_n$  with  $\lim p(A_n) = 0$ ,
  - there exists an N above which a truly random sequence cannot belong to  $A_N$ .
- Resulting definition: we say that  $\mathcal{R}$  is a set of random elements if
  - for every definable decreasing sequence  $\{A_n\}$  for which  $\lim P(A_n) = 0$ ,
  - there exists an N for which  $\mathcal{R} \cap A_N = \emptyset$ .

How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . . Proofs Home Page Title Page **>>** Page 38 of 57 Go Back Full Screen Close Quit

Part I: Taking Into . . .

- Let  $\mathcal{R}_K$  denote the set of all elements which are random in Kolmorogov-Martin-Löf sense. Then:
- Every set of random elements consists of physically meaningful elements.
- For every set  $\mathcal{T}$  of physically meaningful elements, the intersection  $\mathcal{T} \cap \mathcal{R}_K$  is a set of random elements.
- Proof: When  $A_n$  is definable, for  $D_n \stackrel{\text{def}}{=} \bigcap_{i=1}^n A_i \bigcap_{i=1}^\infty A_i$ , we have  $D_n \supseteq D_{n+1}$  and  $\bigcap_{i=1}^\infty D_n = \emptyset$ , so  $P(D_n) \to 0$ .
- Therefore, there exists an N for which the set of random elements does not contain any elements from  $D_N$ .
- Thus, every set of random elements indeed consists of physically meaningful elements.

Part I: Taking Into . . . How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . . Proofs Home Page Title Page **>>** Page 39 of 57 Go Back Full Screen Close Quit

### 34. Acknowledgments

- This work was supported in part by the National Science Foundation grants:
  - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
  - DUE-0926721.
- The authors are thankful to Luc Longpré, Sergei Soloviev, and Michael Zakharevich for valuable discussions.



# Part V Proofs

Part I: Taking Into... How to Formalize the.. Negative Results... Finding Roots Part II: How to Take . . . No Physical Theory Is.. Part III: Physical and . . . Part IV: Relation with . . . Proofs Home Page Title Page 44 **>>** Page 41 of 57 Go Back Full Screen Close Quit

### 35. A Formal Definition of Definable Sets

- Let  $\mathcal{L}$  be a theory.
- Let P(x) be a formula from  $\mathcal{L}$  for which the set  $\{x \mid P(x)\}$  exists.
- We will then call the set  $\{x \mid P(x)\}\ \mathcal{L}$ -definable.
- Crudely speaking, a set is  $\mathcal{L}$ -definable if we can explicitly define it in  $\mathcal{L}$ .
- All usual sets are definable:  $\mathbb{N}$ ,  $\mathbb{R}$ , etc.
- Not every set is  $\mathcal{L}$ -definable:
  - every  $\mathcal{L}$ -definable set is uniquely determined by a text P(x) in the language of set theory;
  - there are only countably many texts and therefore, there are only countably many  $\mathcal{L}$ -definable sets;
  - so, some sets of natural numbers are not definable.

How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . Proofs Home Page Title Page **>>** Page 42 of 57 Go Back Full Screen Close Quit

Part I: Taking Into . . .

### 36. How to Prove Results About Definable Sets

- Our objective is to be able to make mathematical statements about  $\mathcal{L}$ -definable sets. Therefore:
  - in addition to the theory  $\mathcal{L}$ ,
  - we must have a stronger theory  $\mathcal{M}$  in which the class of all  $\mathcal{L}$ -definable sets is a countable set.
- For every formula F from the theory  $\mathcal{L}$ , we denote its Gödel number by  $\lfloor F \rfloor$ .
- We say that a theory  $\mathcal{M}$  is stronger than  $\mathcal{L}$  if:
  - $-\mathcal{M}$  contains all formulas, all axioms, and all deduction rules from  $\mathcal{L}$ , and
  - $\mathcal{M}$  contains a predicate def(n, x) such that for every formula P(x) from  $\mathcal{L}$  with one free variable,

$$\mathcal{M} \vdash \forall y (\operatorname{def}(\lfloor P(x) \rfloor, y) \leftrightarrow P(y)).$$



- As  $\mathcal{M}$ , we take  $\mathcal{L}$  plus all above equivalence formulas.
- Is  $\mathcal{M}$  consistent?
- Due to compactness, we prove that for any  $P_1(x), \ldots, P_m(x), \mathcal{L}$  is consistent with the equivalences corr. to  $P_i(x)$ .
- Indeed, we can take

 $def(n, y) \leftrightarrow (n = |P_1(x)| \& P_1(y)) \lor ... \lor (n = |P_m(x)| \& P_m(y)).$ 

- This formula is definable in  $\mathcal{L}$  and satisfies all m equivalence properties.
- Thus, the existence of a stronger theory is proven.
- The notion of an  $\mathcal{L}$ -definable set can be expressed in  $\mathcal{M}$ : S is  $\mathcal{L}$ -definable iff  $\exists n \in \mathbb{N} \, \forall y \, (\text{def}(n, y) \leftrightarrow y \in S)$ .
- So, all statements involving definability become statements from the  $\mathcal{M}$  itself, not from metalanguage.

Part I: Taking Into...

How to Formalize the...

Negative Results...
Finding Roots

Part II: How to Take...

No Physical Theory Is..

Part III: Physical and . .

Part IV: Relation with . . .

Proofs

Home Page

Title Page





**>>** 

Page 44 of 57

Go Back

Full Screen

Close

- Statement:  $\forall \varepsilon > 0$ , there exists a set  $\mathcal{T}$  for which  $\underline{P}(\mathcal{T}) \geq 1 \varepsilon$ .
- There are countably many definable sequences  $\{A_n\}$ :  $\{A_n^{(1)}\}, \{A_n^{(2)}\}, \ldots$
- For each k,  $P\left(A_n^{(k)}\right) \to 0$  as  $n \to \infty$ .
- Hence, there exists  $N_k$  for which  $P\left(A_{N_k}^{(k)}\right) \leq \varepsilon \cdot 2^{-k}$ .
- We take  $\mathcal{T} \stackrel{\text{def}}{=} \bigcup_{k=1}^{\infty} A_{N_k}^{(k)}$ . Since  $P\left(A_{N_k}^{(k)}\right) \leq \varepsilon \cdot 2^{-k}$ , we have

$$\overline{P}\left(\bigcup_{k=1}^{\infty} A_{N_k}^{(k)}\right) \le \sum_{k=1}^{\infty} P\left(A_{N_k}^{(k)}\right) \le \sum_{k=1}^{\infty} \varepsilon \cdot 2^{-k} = \varepsilon.$$

• Hence,  $\underline{P}(\mathcal{T}) = 1 - \overline{P}\left(\bigcup_{k=1}^{\infty} A_{N_k}^{(k)}\right) \ge 1 - \varepsilon$ .

Part I: Taking Into...

How to Formalize the...

Negative Results...

Finding Roots

Part II: How to Take...

No Physical Theory Is...
Part III: Physical and...

Part IV: Relation with...

Proofs

Home Page

Title Page





Page 45 of 57

Go Back

Full Screen

Close

• For each i, we can compute  $\varepsilon' \in (\varepsilon/2, \varepsilon)$  for which  $B_i \stackrel{\text{def}}{=} \{x : d(x, x_i) \leq \varepsilon'\}$  is a computable compact set.

- It is possible to algorithmically compute the minimum of a function on a computable compact set.
- Thus, we can compute  $m_i \stackrel{\text{def}}{=} \min\{|f(x)| : x \in B_i\}.$
- Since  $f \in T$ , similarly to the previous proof, we can prove that  $\exists N \, \forall f \in T \, \forall i \, (m_i = 0 \, \lor \, m_i \geq 2^{-N})$ .
- Comp.  $m_i$  w/acc.  $2^{-(N+2)}$ , we check  $m_i = 0$  or  $m_i > 0$ .
- Let's prove that  $d_H(R, \{x_i : m_i = 0\}) \leq \varepsilon$ , i.e., that  $\forall i \ (m_i = 0 \Rightarrow \exists x \ (f(x) = 0 \& d(x, x_i) \leq \varepsilon))$  and  $\forall x \ (f(x) = 0 \Rightarrow \exists i \ (m_i = 0 \& d(x, x_i) \leq \varepsilon))$ .

Part I: Taking Into . . . How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . Proofs Home Page Title Page **>>** Page 46 of 57 Go Back Full Screen

Close

### Finding Roots: Proof (cont-d)

- $m_i = 0$  means  $\min\{|f(x)| : x \in B_i \stackrel{\text{def}}{=} B_{\varepsilon'}(x_i)\} = 0.$
- Since the set K is compact, this value 0 is attained, i.e., there exists a value  $x \in B_i$  for which f(x) = 0.
- From  $x \in B_i$ , we conclude that  $d(x, x_i) \leq \varepsilon'$  and, since  $\varepsilon' < \varepsilon$ , that  $d(x, x_i) < \varepsilon$ .
- Thus,  $x_i$  is  $\varepsilon$ -close to the root x.
- Vice versa, let x be a root, i.e., let f(x) = 0.
- Since the points  $x_i$  form an  $(\varepsilon/2)$ -net, there exists an index i for which  $d(x, x_i) \leq \varepsilon/2$ .
- Since  $\varepsilon/2 < \varepsilon'$ , this means that  $d(x, x_i) \leq \varepsilon'$  and thus,  $x \in B_i$ .
- Therefore,  $m_i = \min\{|f(x)| : x \in B_i\} = 0$ . So, the root x is  $\varepsilon$ -close to a point  $x_i$  for which  $m_i = 0$ .

Part I: Taking Into . . . How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . .

Proofs

Home Page Title Page







Go Back

Full Screen

Close

- *Known*: if a f is continuous and 1-1 on a compact, then  $f^{-1}$  is also continuous.
- Reminder: S is compact if and only if it is closed and for every  $\varepsilon$ , it has a finite  $\varepsilon$ -net.
- $\bullet$  Given: the set X is definably separable.
- Means:  $\exists$  def.  $s_1, \ldots, s_n, \ldots$  everywhere dense in X.
- Solution: take  $A_n \stackrel{\text{def}}{=} \bigcup_{i=1}^n B_{\varepsilon}(s_i)$ .
- Since  $s_i$  are everywhere dense, we have  $\cap A_n = \emptyset$ .
- Hence, there exists N for which  $A_N \cap \mathcal{T} = \emptyset$ .
- Since  $A_N = -\bigcup_{i=1}^N B_{\varepsilon}(s_i)$ , this means  $\mathcal{T} \subseteq \bigcup_{i=1}^N B_{\varepsilon}(s_i)$ .
- Hence  $\{s_1, \ldots, s_N\}$  is an  $\varepsilon$ -net for  $\mathcal{T}$ . Q.E.D.

Part I: Taking Into...

How to Formalize the...

Negative Results...

Finding Roots

Part II: How to Take...

No Physical Theory Is...
Part III: Physical and...

Part IV: Relation with . . .

Proofs

Home Page

Title Page





Page 48 of 57

Go Back

Full Screen

Close

- Let T consist of physically meaningful elements. Let us prove that  $T \cap \mathcal{R}_K$  is a set of random elements.
- If  $A_n \supseteq A_{n+1}$  and  $P\left(\bigcap_{n=1}^{\infty} A_n\right) = 0$ , then for  $B_m \stackrel{\text{def}}{=} A_m \bigcap_{n=1}^{\infty} A_n$ , we have  $B_m \supseteq B_{m+1}$  and  $\bigcap_{n=1}^{\infty} B_n = \emptyset$ .
- Thus, by definition of a set consisting of physically meaningful elements, we conclude that  $B_N \cap T = \emptyset$ .
- Since  $P\left(\bigcap_{n=1}^{\infty} A_n\right) = 0$ , we also know that  $\left(\bigcap_{n=1}^{\infty} A_n\right) \cap \mathcal{R}_K = \emptyset$ .
- Thus,  $A_N = B_N \cup \left(\bigcap_{n=1}^{\infty} A_n\right)$  has no common elements with the intersection  $T \cap \mathcal{R}_K$ . Q.E.D.

Part I: Taking Into...

How to Formalize the...

Negative Results...

Finding Roots

Part II: How to Take...

No Physical Theory Is...
Part III: Physical and...

Part IV: Relation with...

Proofs

Title Page

Home Page





Page 49 of 57

Go Back

Full Screen

Close

Close

43.

we have

- As  $\mathcal{A}$ , given an instance i, we simply produce the result  $\omega_i$  of the i-th experiment.
- Let us prove, by contradiction, that for every  $\varepsilon > 0$  and for every n, there exists an integer N > n for which

$$\#\{i \leq N : i \in S_{\mathcal{P}} \& \omega_i = s_{\mathcal{P},i}\} > (1-\varepsilon) \cdot \#\{i \leq N : i \in S_{\mathcal{P}}\}.$$
• The assumption that this property is not satisfied means that for some  $\varepsilon > 0$  and for some integer  $n$ ,

$$\forall N_{\geq n} \# \{ i \leq N : i \in S_{\mathcal{P}} \& \omega_i = s_{\mathcal{P},i} \} \leq (1 - \varepsilon) \cdot \# \{ i \leq N : i \in S_{\mathcal{P}} \}.$$
• Let  $T \stackrel{\text{def}}{=} \{ x : \# \{ i \leq N : i \in S_{\mathcal{P}} \& x_i = s_{\mathcal{P},i} \} \leq$ 

- $(1 \varepsilon) \cdot \#\{i \le N : i \in S_{\mathcal{P}}\} \text{ for all } N \ge n\}.$
- We will prove that this set T is a physical theory (in the sense of the above definition); then  $\omega \notin T$ .

How to Formalize the...

Part I: Taking Into . . .

Negative Results...
Finding Roots

Part II: How to Take...

No Physical Theory Is..

Part III: Physical and . . .
Part IV: Relation with . . .

Proofs

Home Page

Title Page

**▲** 

**>>** 

Page 50 of 57

Go Back

Full Screen

Tun Sci

Close

- Reminder:  $T = \{x : \#\{i \le N : i \in S_{\mathcal{P}} \& x_i = s_{\mathcal{P},i}\} \le (1 \varepsilon) \cdot \#\{i \le N : i \in S_{\mathcal{P}}\} \text{ for all } N \ge n\}.$
- By definition, a physical theory is a set which is nonempty, closed, nowhere dense, and definable.
- Non-emptiness is easy: the sequence  $x_i = \neg s_{\mathcal{P},i}$  for  $i \in S_{\mathcal{P}}$  belongs to T.
- One can prove that T is closed, i.e., if  $x^{(m)} \in T$  for which  $x^{(m)} \to \omega$ , then  $x \in T$ .
- Nowhere dense means that for every finite sequence  $x_1 \dots x_m$ , there exists a continuation  $x \notin T$ .
- Indeed, for extension, we can take  $x_i = s_{\mathcal{P},i}$  if  $i \in S_{\mathcal{P}}$ .
- ullet Finally, we have an explicit definition of T, so T is definable.

Part I: Taking Into...

How to Formalize the...

Negative Results...

Finding Roots

Part II: How to Take...

No Physical Theory Is...
Part III: Physical and...

Part IV: Relation with . . .

Proofs

Home Page

Title Page





Page 51 of 57

Go Back

Full Screen

Close

-----

• Let us assume that  $P \neq NP$ ; we want to prove that for every feasible ph-algorithm  $\mathcal{A}$ , it is not possible to have

 $\forall N \, (\#\{i \leq N : i \in S_{\mathcal{P}} \& \mathcal{A}(\omega, i) = s_{\mathcal{P},i}\} = \#\{i \leq N : i \in S_{\mathcal{P}}\}).$ 

• Let us consider, for each feasible ph-algorithm  $\mathcal{A}$ ,

 $T(\mathcal{A}) \stackrel{\text{def}}{=} \{x : \#\{i \leq N : i \in S_{\mathcal{P}} \& \mathcal{A}(x,i) = s_{\mathcal{P},i}\} = 1\}$  $\#\{i \leq N : i \in S_{\mathcal{P}}\}$  for all  $N\}$ .

- Similarly to the proof of the main result, we can show that this set T(A) is closed and definable.
- To prove that T(A) is nowhere dense, we extend  $x_1 \dots x_m$  by 0s; then  $x \in T$  would mean P=NP.
- If  $T(\mathcal{A}) \neq \emptyset$ , then  $T(\mathcal{A})$  is a theory, so  $\omega \notin T(\mathcal{A})$ .
- If  $T(A) = \emptyset$ , this also means that A does not solve all instances of the problem  $\mathcal{P}$  – no matter what  $\omega$  we use.

Part I: Taking Into . . . How to Formalize the.

Negative Results . . .

Finding Roots

Part II: How to Take . . .

No Physical Theory Is.. Part III: Physical and . .

Part IV: Relation with . .

Proofs

Home Page

Title Page





Page 52 of 57

Go Back

Full Screen

Close

- Let us assume that no non-oracle feasible algorithm  $\delta$ -solves the problem  $\mathcal{P}$ .
- Let's consider, for each  $N_0$  and feasible ph-alg.  $\mathcal{A}$ ,

$$T(\mathcal{A}, N_0) \stackrel{\text{def}}{=} \{x : \#\{i \le N : i \in S_{\mathcal{P}} \& \mathcal{A}(x, i) = s_{\mathcal{P}, i}\} > \delta \cdot \#\{i \le N : i \in S_{\mathcal{P}}\} \text{ for all } N \ge N_0\}.$$

- We want to prove that  $\forall N_0 (\omega \notin T(\mathcal{A}, N_0))$ .
- Similarly to the proof of the Main Result, we can show that  $T(A, N_0)$  is closed and definable.
- To prove that  $T(A, N_0)$  is nowhere dense, we extend  $x_1 \dots x_m$  by 0s.
- If  $T(\mathcal{A}, N_0) \neq \emptyset$ , then  $T(\mathcal{A}, N_0)$  is a theory hence  $\omega \notin T(\mathcal{A}, N_0)$ .
- If  $T(A, N_0) = \emptyset$ , then also  $\omega \notin T(A, N_0)$ .

Part I: Taking Into . . . How to Formalize the Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . Proofs Home Page Title Page **>>** Page 53 of 57 Go Back

Full Screen

Close

#### 47. Main References

- Kreinovich, V.: Negative results of computable analysis disappear if we restrict ourselves to random (or, more generally, typical) inputs, Mathematical Structures and Modeling 25, 100–103 (2012)
- Kosheleva, O., Zakharevich, M., Kreinovich, V.: If many physicists are right and no physical theory is perfect, then by using physical observations, we can feasibly solve almost all instances of each NP-complete problem, Mathematical Structures and Modeling 31, 4–17 (2014)

Part I: Taking Into . . . How to Formalize the. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . Part IV: Relation with . . . Proofs Home Page Title Page **>>** Page 54 of 57 Go Back Full Screen Close Quit

### 48. References to Our Papers re Typical and Randomness

- Finkelstein, A.M., Kreinovich, V.: Impossibility of hardly possible events: physical consequences. Abstracts of the 8th International Congress on Logic, Methodology, and Philosophy of Science, Moscow, 1987, 5(2), 23–25 (1987)
- Kreinovich, V.: Toward formalizing non-monotonic reasoning in physics: the use of Kolmogorov complexity. Revista Iberoamericana de Inteligencia Artificial 41, 4–20 (2009)
- Kreinovich, V., Finkelstein, A.M.: Towards applying computational complexity to foundations of physics. Notes of Mathematical Seminars of St. Petersburg Department of Steklov Institute of Mathematics 316, 63–110 (2004); reprinted in Journal of Mathematical Sciences 134(5), 2358–2382 (2006)



# 49. References to Our Papers re Typical and Randomness (cont-d)

- Kreinovich, V., Kunin, I.A.: Kolmogorov complexity and chaotic phenomena. International Journal of Engineering Science 41(3), 483–493 (2003)
- Kreinovich, V., Kunin, I.A.: Kolmogorov complexity: how a paradigm motivated by foundations of physics can be applied in robust control. In: Fradkov, A.L., Churilov, A.N., eds. Proceedings of the International Conference "Physics and Control" PhysCon'2003, Saint-Petersburg, Russia, August 20—22, 2003, 88–93 (2003)
- Kreinovich, V., Kunin, I.A.: Application of Kolmogorov complexity to advanced problems in mechanics. Proceedings of the Advanced Problems in Mechanics Conference APM'04, St. Petersburg, Russia, June 24–July 1, 2004, 241–245 (2004)

Part I: Taking Into . . . How to Formalize the.. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . . Part IV: Relation with . . . Proofs Home Page Title Page **>>** Page 56 of 57 Go Back Full Screen Close Quit

# 50. References to Our Papers re Typical and Randomness (cont-d)

• Kreinovich, V., Longpré, L., Koshelev, M.: Kolmogorov complexity, statistical regularization of inverse problems, and Birkhoff's formalization of beauty. In: Mohamad-Djafari, A., ed., Bayesian Inference for Inverse Problems, Proceedings of the SPIE/International Society for Optical Engineering, San Diego, California, 1998, 3459, 159–170 (1998)

Part I: Taking Into . . . How to Formalize the.. Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . . Part IV: Relation with . . . Proofs Home Page Title Page Page 57 of 57 Go Back Full Screen Close Quit

### 51. References to Other Related Papers

- Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications, Springer (2008)
- Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics, Springer, Berlin (1989)
- Weihrauch, K.: Computable Analysis, Springer-Verlag, Berlin (2000)

Part I: Taking Into . . . How to Formalize the . . Negative Results . . . Finding Roots Part II: How to Take . . . No Physical Theory Is . . Part III: Physical and . . . Part IV: Relation with . . Proofs Home Page Title Page 44 **>>** Page 58 of 57 Go Back Full Screen Close