Why Beta Priors: Invariance-Based Explanation

Olga Kosheleva¹, Vladik Kreinovich¹, and Kittawit Autchariyapanitkul²

¹University of Texas at El Paso El Paso, Texas 79968, USA olgak@utep.edu, vladik@utep.edu ²Faculty of Economics, Maejo University Chiang Mai, Thailand, kittar3@hotmail.com Formulation of the . . . Main Idea Let Us Describe This... Resulting Definition Main Result and Its Proof Proof (cont-d) How to Get a General . . Acknowledgments Bibliography Home Page **>>** Page 1 of 15 Go Back Full Screen Close Quit

1. Formulation of the Problem

- In the Bayesian approach:
 - when we do not know the probability $p \in [0, 1]$ of some event,
 - it is usually recommended to use a Beta prior distribution for p, with pdf

$$\rho(x) = c \cdot x^{\alpha - 1} \cdot (1 - x)^{\beta - 1}.$$

- There have been numerous successful application of the use of the Beta distribution in the Bayesian approach.
- How can we explain this success?
- Why not use some other family of distributions located on the interval [0, 1]?

2. Formulation of the Problem (cont-d)

- The need for such an explanation is especially important now, when the statistician community is:
 - replacing the traditional p-value techniques
 - with more reliable hypothesis testing methods.
- One such method is the Minimum Bayesian Factor (MBF) method.
- This method is based on Beta priors $\rho(x) = c \cdot x^a$ corresponding to $\beta = 1$.
- In this paper, we provide a natural explanation for these empirical successes.

3. Main Idea

- We want to find a natural prior distribution on the interval [0, 1].
- ullet This distribution should describe how frequently different probability values p appear.
- In determining this distribution, a natural idea to take into account is that:
 - in practice,
 - all probabilities are, in effect, conditional probabilities.
- We start with some class, and in this class, we find the corresponding frequencies.

4. Main Idea (cont-d)

- From this viewpoint:
 - we can start with the original probabilities and with their prior distribution,
 - or we can impose additional conditions and consider the resulting conditional probabilities.
- For example, in medical data processing, we may consider the probability that:
 - a patient with a certain disease
 - recovers after taking the corresponding medicine.
- We can consider this original probability.
- Alternatively, we can consider the conditional probability that a patient will recover.
- For example, the condition can be that the patient is at least 18 years old.

5. Main Idea (cont-d)

- We can impose many such conditions.
- We are looking for a universal prior, a prior that would describe all possible situations.
- So, it makes sense to consider priors for which:
 - after such a restriction,
 - we will get the exact same prior for the corresponding conditional probability.

6. Let Us Describe This Main Idea in Precise Terms

• In general, the conditional probability $P(A \mid B)$ has the form

$$P(A \mid B) = \frac{P(A \& B)}{P(B)}.$$

- Crudely speaking, this means that:
 - when we transition from the original probabilities to the new conditional ones,
 - we limit ourselves to the original probabilities which do not exceed some value $p_0 = P(B)$, and
 - we divide each original probability by p_0 .
- In these terms, the above requirement takes the following form: for each $p_0 \in (0,1)$,
 - if we limit ourselves to the interval $[0, p_0]$,
 - then the ratios p/p_0 should have the same distribution as the original one.

Main Idea Let Us Describe This... Resulting Definition Main Result and Its Proof Proof (cont-d) How to Get a General . . Acknowledgments Bibliography Home Page Title Page **>>** Page 7 of 15 Go Back Full Screen Close Quit

Formulation of the . . .

7. Resulting Definition

- Let us assume that we have a probability distribution with probability density $\rho(x)$ on the interval [0,1].
- We say that this distribution is invariant if:
 - $for each p_0 \in (0, 1),$
 - the ratio x/p_0 (restricted to the values $x \leq p_0$) has the same distribution, i.e.:

$$\rho(x/p_0: x \le p_0) = \rho(x).$$

$$\rho(x) = c \cdot x^a$$
 for some c and a .

• **Proof.** The conditional probability density has the form

$$\rho(x/p_0: x \le p_0) = C(p_0) \cdot \rho(x/p_0).$$

- Here, C is an appropriate constant depending on p_0 .
- Thus, the invariance condition has the form

$$C(p_0) \cdot \rho(x/p_0) = \rho(x).$$

• By moving the term $C(p_0)$ to the right-hand side and denoting $\lambda \stackrel{\text{def}}{=} 1/p_0$ (so that $p_0 = 1/\lambda$), we get

$$\rho(\lambda \cdot x) = c(\lambda) \cdot \rho(x).$$

Formulation of the . . . Main Idea Let Us Describe This... Resulting Definition Main Result and Its Proof Proof (cont-d) How to Get a General . . Acknowledgments Bibliography Home Page Title Page **>>** Page 9 of 15 Go Back Full Screen Close

Quit

9. Proof (cont-d)

• We get $\rho(\lambda \cdot x) = c(\lambda) \cdot \rho(x)$, where we denoted

$$c(\lambda) \stackrel{\text{def}}{=} 1/C(1/\lambda).$$

- The probability density function is an integrable function its integral is equal to 1.
- Known: all integrable solutions of the above functional equation has the form $\rho(x) = c \cdot x^a$ for some c, a.
- The proposition is thus proven.
- Reminder: these distributions corr. to $\beta = 1$ are used in the Bayesian approach to hypothesis testing.

10. How to Get a General Prior Distribution

- The above proposition describes the case when:
 - we have a single distribution
 - corresponding to a single piece of prior information.
- In practice, we may have many different pieces of information:
 - some of these pieces are about the probability p of the corresponding event E,
 - some may be about the probability p' = 1 p of the opposite event $\neg E$.
- According to the above Proposition, each piece of information about p can be described by the pdf $c_i \cdot x^{a_i}$.
- Similarly, each piece of information about p' = 1 p can be described by the probability density

$$c'_j \cdot x^{a'_j}$$
.

Main Idea Let Us Describe This... Resulting Definition Main Result and Its Proof Proof (cont-d) How to Get a General . . Acknowledgments Bibliography Home Page Title Page **>>** Page 11 of 15 Go Back Full Screen Close Quit

Formulation of the . . .

11. General Case (cont-d)

• In terms of the original probability p = 1 - p', this probability density has the form

$$c_i' \cdot (1-x)^{a_j'}.$$

- All these piece of information are independent.
- So, a reasonable idea is to multiply these probability density functions.
- After multiplication, we get a distribution of the type $c \cdot x^a \cdot (a-x)^{a'}$, where $a = \sum_i a_i$ and $a' = \sum_i a'_i$.
- This is exactly the Beta distribution for $\alpha = a + 1$ and $\beta = a' + 1$.
- \bullet Thus, we have indeed justified the use of Beta priors.

Main Idea Let Us Describe This.. Resulting Definition Main Result and Its Proof Proof (cont-d) How to Get a General . . Acknowledgments Bibliography Home Page Title Page **>>** Page 12 of 15 Go Back Full Screen Close Quit

Formulation of the . . .

12. Acknowledgments

- This work was supported by the Institute of Geodesy, Leibniz University of Hannover.
- It was also supported in part by the US National Science Foundation grants:
 - 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science) and
 - HRD-1242122 (Cyber-ShARE Center of Excellence).
- This paper was written when V. Kreinovich was visiting Leibniz University of Hannover.

13. Bibliography

- A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, *Bayesian Data Analysis*, Chapman & Hall/CRC, Boca Raton, Florida, 2013.
- A. Gelman and C. P. Robert, "The statistical crises in science", *American Scientist*, 2014, Vol. 102, No. 6, pp. 460–465.
- K. R. Kock, Introduction to Bayesian Statistics, Springer, 2007.
- H. T. Nguyen, "How to test without p-values", *Thailand Statistician*, 2019, Vol. 17, No. 2, pp. i-x.
- R. Page and E. Satake, "Beyond p-values and hypothesis testing: using the Minimum Bayes Factor to teach statistical inference in undergraduate introductory statistics courses", *Journal of Education and Learning*, 2017, Vol. 6, No. 4, pp. 254—266.

14. Bibliography (cont-d)

• R. L. Wasserstein and N. A. Lazar, "The ASA's statement on p-values: context, process, and purpose", *American Statistician*, 2016, Vol. 70, No. 2, pp. 129–133.

Formulation of the . . .

Main Idea

Let Us Describe This . . .

Resulting Definition

Main Result and Its Proof

Proof (cont-d)

How to Get a General . . .

Acknowledgments

Bibliography

Home Page

Quit