Ranking-Based Voting Revisited: Maximum Entropy Approach Leads to Borda Count (and Its Versions)

Olga Kosheleva¹, Vladik Kreinovich¹,
and Guo Wei²

¹University of Texas at El Paso
El Paso, Texas 79968, USA
olgak@utep.edu, vladik@utep.edu

²Department of Mathematics and Computer Science
University of North Carolina at Pembroke
Pembroke, North Carolina 28372 USA, guo.wei@uncp.edu

Need for Voting and . . . What Information Can. Ranking-Based . . . Why Borda Count? How to Describe . . . Utility-Based Decision How to Make a Group. Case of Transferable . . . Maximum Entropy . . . Home Page **>>** Page 1 of 28 Go Back Full Screen Close Quit

1. Need for Voting and Group Decision Making

- In many real-life situations, we need to make a decision that affects many people.
- Ideally, when making this decision, we should take into account the preferences of all the affected people.
- This group decision making situation is also known as *voting*.

Need for Voting and . . . What Information Can. Ranking-Based . . . Why Borda Count? How to Describe . . . Utility-Based Decision How to Make a Group. Case of Transferable . . . Maximum Entropy . . . Home Page Title Page **>>** Page 2 of 28 Go Back Full Screen Close Quit

2. What Information Can Be Used for Voting

- The simplest and most widely used type of voting is when each person selects one of the alternatives.
- After this selection, all we know is how many people voted for each alternative; clearly:
 - the more people vote for a certain alternative,
 - the better is this alternative for the community as a whole.
- Thus, if this is all the information we have, then:
 - a natural idea is
 - to select the alternative that gathered the largest number of votes.
- (Another idea is to keep only the alternatives with the largest number of votes and vote again.)

3. What Information Can Be Used (cont-d)

- In this scheme, for each person,
 - we only take into account one piece of information:
 - which alternative is preferable to this person.
- To make more adequate decision, it is desirable to use more information about people's preferences.
- An ideal case is when we use full information about people's preferences.
- This is ideal but this requires too much elicitation and is, thus, not used in practice.
- An intermediate stage when we use more information than in the simple majority voting is when:
 - we ask the participants to rank all the alternatives,
 and
 - we use these rankings to make a decision.

What Information Can. Ranking-Based . . . Why Borda Count? How to Describe . . . Utility-Based Decision How to Make a Group. Case of Transferable . . . Maximum Entropy . . . Home Page Title Page **>>** Page 4 of 28 Go Back Full Screen Close Quit

4. Ranking-Based Voting: A Brief Reminder

- The famous result by a Nobelist Kenneth Arrow shows:
 - that it is not possible to have a ranking-based voting scheme
 - which would satisfy all reasonable fairness-related properties.
- So what can we do? One of the ideas is *Borda count*, when:
 - for each participant i and for each alternative A_j ,
 - we count the number b_{ij} of alternatives that the *i*-th participant ranked lower than A_j .
- Then, for each alternative A_j , we add up the numbers corresponding to different participants.
- We select the alternative with the largest sum $\sum_{i=1}^{n} b_{ij}$.

What Information Can. Ranking-Based . . . Why Borda Count? How to Describe . . . Utility-Based Decision How to Make a Group. Case of Transferable... Maximum Entropy . . . Home Page Title Page **>>** Page 5 of 28 Go Back Full Screen Close Quit

5. Why Borda Count?

- Borda count is often successfully used in practice.
- However, there are several other alternative schemes.
- This prompts a natural question: why namely Borda count and why not one of these other schemes?
- In this talk, we provide an explanation for the success of Borda count; namely, we show that:
 - if we use the maximum entropy approach a known way for making decisions under uncertainty,
 - then the Borda count (and its versions) naturally follows.

6. How to Describe Individual Preferences

- We want to describe what we should do when only know the rankings.
- Let us first recall what decision we should make when we have full information about the preferences.
- To describe this, we need to recall how to describe these preferences.
- In decision theory, a user's preferences are described by using the notion of *utility*.
- To define this notion, we need to select two extreme alternatives:
 - a very bad alternative A_{-} which is worse than anything that we will actually encounter, and
 - a very good alternative A_+ which is better than anything that we will actually encounter.

7. How to Describe Preferences (cont-d)

- For each number p from the interval [0,1], we can then form a lottery L(p) in which:
 - we get A_+ with probability p and
 - we get A_{-} with the remaining probability 1-p.
- For p = 0, the lottery L(0) coincides with the very bad alternative A_{-} .
- Thus, L(0) is worse than any of the alternatives A that we encounter: $L(0) = A_{-} < A$.
- For p = 1, the lottery L(1) coincides with the very good alternative A_+ .
- Thus, L(1) is better than any of the alternatives A that we encounter: $A < L(1) = A_+$.
- \bullet Clearly, the larger p, the better the lottery.

What Information Can. Ranking-Based . . . Why Borda Count? How to Describe . . . Utility-Based Decision How to Make a Group . . Case of Transferable . . . Maximum Entropy . . . Home Page Title Page **>>** Page 8 of 28 Go Back Full Screen Close Quit

8. How to Describe Preferences (cont-d)

- Thus, there exists a threshold p_0 such that:
 - for $p < p_0$, we have A(p) < A, and
 - for $p > p_0$, we have A < A(p).
- This threshold is known as the *utility* of the alternative A; it is usually denoted by u(A).
- In particular, according to this definition:
 - the very bad alternative A_{-} has utility 0, while
 - the very good alternative A_+ has utility 1.
- \bullet To fully describe people's preferences, we need to elicit,
 - from each person i,
 - this person's utility $u_i(A_j)$ of all possible alternatives A_j .

9. Utility Is Defined Modulo Linear Transformations

- The numerical value of utility depends on the selection of values A_{-} and A_{+} .
- One can show that, if we use a different pair of alternatives (A'_{-}, A'_{+}) , then:
 - the resulting new utility values u'(A) are related to the original values u(A)
 - by a linear dependence: $u'(A) = k + \ell \cdot u(A)$ for some k and $\ell > 0$.

10. Utility-Based Decision Making under Probabilistic Uncertainty

- In many practical situations, we do not know the exact consequences of different actions.
- For each action, we may have different consequences c_1, \ldots, c_m , with different utilities $u(c_1), \ldots, u(c_m)$.
- We can also usually estimate the probabilities p_1, \ldots, p_m of different consequences.
- What is the utility of this action?
- This action is equivalent to selecting c_i with probability p_i .
- By definition of utility, each consequence c_i is, its turn, equivalent to a lottery in which:
 - we get A_+ with probability $u(c_i)$ and
 - we get A_{-} with the remaining probability $1-u(c_i)$.

What Information Can. Ranking-Based . . . Why Borda Count? How to Describe . . . Utility-Based Decision How to Make a Group. Case of Transferable... Maximum Entropy . . . Home Page Title Page **>>** Page 11 of 28 Go Back Full Screen

Close

Quit

11. Utility-Based Decision Making (cont-d)

- Thus, the original action is equivalent to a 2-stage lottery as a result of which we get either A_+ or A_- .
- One can easily conclude that the probability of getting A_+ in this 2-stage lottery is equal to the sum

$$p_1 \cdot u(c_1) + \ldots + p_m \cdot u(c_m)$$
.

- Thus, by definition of utility, this sum is the utility of the corresponding action.
- It should be mentioned that this sum happens to be the expected value of utility.

- Suppose that we know the utility $u_i(A_i)$ of each alternative A_i for each participant i.
- Now, we need to decide which alternative to select.
- Each alternative is thus characterized by the tuple of the corresponding utility values $(u_1(A_i), \ldots, u_n(A_i))$.
- Based on the tuples corresponding to different alternatives, we need to select the best one.
- In other words, we need to be able:
 - given $(u_1(A_i), \ldots, u_n(A_i))$ and $(u_1(A_k), \ldots, u_n(A_k))$,
 - to decide which of the two alternatives is better, i.e., whether

$$(u_1(A_j), \dots, u_n(A_j)) < (u_1(A_k), \dots, u_n(A_k)) \text{ or }$$

 $(u_1(A_k), \dots, u_n(A_k)) < (u_1(A_j), \dots, u_n(A_j)).$

Need for Voting and . . . What Information Can. Ranking-Based . . . Why Borda Count? How to Describe . . . Utility-Based Decision How to Make a Group. Case of Transferable . . . Maximum Entropy . . . Home Page Title Page Page 13 of 28 Go Back

>>

Full Screen

Close

Quit

13. How to Make a Group Decision (cont-d)

- In the voting situation, there is usually a status quo state:
 - the state that exists right now and
 - that will remain if we do not make any decision.
- For example:
 - if we are voting on different plans to decrease the traffic congestion in a city,
 - the status quo situation is not to do anything and to continue suffering traffic delays.
- The status quo situation is worse than any of the alternatives.
- So, we can take this status quo situation as the value A_{-} .
- In this case, for all participants, the utility of the status quo situation is 0.

What Information Can. Ranking-Based . . . Why Borda Count? How to Describe . . . Utility-Based Decision How to Make a Group. Case of Transferable... Maximum Entropy . . . Home Page Title Page **>>** Page 14 of 28 Go Back Full Screen Close Quit

14. How to Make a Group Decision (cont-d)

- The only remaining freedom is selecting A_+ .
- If we replace the original very good alternative A_+ with a new alternative A'_+ , then:
 - the corresponding linear transformation
 - should transform 0 into 0.
- Thus, it should have the form $u_i'(A) = \ell_i \cdot u_i(A)$.
- In principle, each participant can select his/her own scale.
- It is reasonable to require that:
 - if one of the participants selects a different A_{+} ,
 - then the resulting group choice should not change.

What Information Can. Ranking-Based . . . Why Borda Count? How to Describe . . . Utility-Based Decision How to Make a Group. Case of Transferable... Maximum Entropy . . . Home Page Title Page **>>** Page 15 of 28 Go Back Full Screen Close Quit

15. How to Make a Group Decision (cont-d)

- For the order on the set of all the tuples:
 - if $(u_1, \ldots, u_n) < (u'_1, \ldots, u'_n)$
 - then $(\ell_1 \cdot u_1, \dots, \ell_n \cdot u_n) < (\ell_1 \cdot u'_1, \dots, \ell_n \cdot u'_n).$
- Other requirements include:
 - monotonicity: if an alternative is better for everyone it should be preferred, and
 - fairness: the order should not change is we simply rename the participants.
- It turns out that the only order with this property is:

$$(u_1, \dots, u_n) < (u'_1, \dots, u'_n) \Leftrightarrow \prod_{i=1}^n u_i < \prod_{i=1}^n u'_i.$$

• This comparison is known as Nash's bargaining solution after the Nobelist John Nash. Need for Voting and . . . What Information Can . . .

Ranking-Based . . .

Why Borda Count?

How to Describe...

Utility-Based Decision . .

How to Make a Group...

Case of Transferable...

Maximum Entropy...

Home Page

Title Page

Page 16 of 28

Go Back

Full Screen

Close

Close

Quit

16. How to Make a Group Decision: Case of Transferable Utility

- The above analysis refers to the case when we make a simple decision: e.g., when we simply elect an official.
- In many other group decision situations, however, the situation is more complicated.
- For example, some people may be opposed a road construction plan, since:
 - during this construction,
 - their access to their homes and businesses will be limited.
- In such situations, if this particular alternative seems to be overall the best, a reasonable idea is:
 - to use some of its benefits
 - to compensate those who will experience temporary inconveniences.

What Information Can. Ranking-Based . . . Why Borda Count? How to Describe . . . Utility-Based Decision How to Make a Group. Case of Transferable . . . Maximum Entropy . . . Home Page Title Page **>>** Page 17 of 28 Go Back Full Screen Close

Quit

- The possibility of such a compensation is known as transferable utility:
 - in contrast to the above simple choice situation,
 - we can transfer utility from one participant to another.
- That we can move utility from person to person means that we have a common unit for utility.
- So, when some utility is transferred, the sum of all utilities remains constant.
- Suppose that without the transfers, the utilities corresponding to some alternative are u_1, \ldots, u_n .

- The possibility of transfer means that:
 - we can have different values u'_1, \ldots, u'_n ,
 - as long as the sum of all the utilities remains the same: $\sum_{i=1}^{n} u_i = \sum_{i=1}^{n} u'_i$.
- The optimal transfer is when the product of the individual utilities attains the largest possible value.
- To find the resulting utility values, we need:
 - given the values u_1, \ldots, u_n ,
 - to find the values u'_1, \ldots, u'_n for which $\prod_{i=1} u'_i$ is the largest under the constraint

$$\sum_{i=1}^{n} u_i = \sum_{i=1}^{n} u'_i.$$

- By applying the Lagrange multiplier method, we can:
 - reduce this constraint optimization problem
 - to the unconstraint problem of optimizing the following objective function:

$$\prod_{i=1}^{n} u_i' + \lambda \cdot \left(\sum_{i=1}^{n} u_i - \sum_{i=1}^{n} u_i' \right).$$

• Differentiating this expression with respect to each unknown u'_i and equating the derivative to 0, we get

$$\prod_{i' \neq i} u'_{i'} - \lambda = 0$$
, i.e., $\prod_{i' \neq i} u'_{i'} = \lambda$.

• Thus, for each $i, u'_i = \frac{\prod_{i'=1}^{n} u'_{i'}}{\prod_{i' \neq i} u'_{i'}} = \frac{\prod_{i'=1}^{n} u'_{i'}}{\lambda}$.

- The right-hand side of this formula does not depend on i, thus we have $u'_1 = \ldots = u'_n$.
- From the condition that $\sum_{i=1}^{n} u_i = \sum_{i=1}^{n} u_i'$, we conclude that $u_1' = \ldots = u_n' = \frac{1}{n} \cdot \sum_{i=1}^{n} u_i$ and thus, that

$$\prod_{i=1}^{n} u_i' = \left(\frac{1}{n} \cdot \sum_{i=1}^{n} u_i\right)^n.$$

- Among several alternatives, we should select the one for which this product is the largest.
- This is equivalent to selecting the alternative for which the sum $\sum_{i=1}^{n} u_i$ attains its largest possible value.

Need for Voting and . . . What Information Can. Ranking-Based . . . Why Borda Count? How to Describe . . . Utility-Based Decision How to Make a Group. Case of Transferable . . . Maximum Entropy . . . Home Page Title Page **>>** Page 21 of 28 Go Back Full Screen Close Quit

21. Ranking-Based Voting: Reminder

- In the situation of ranking-based voting, we do not know the utilities.
- All we know, for each participant, is the ranking given by this participants to possible alternatives.
- Ranking $A_{i_1} < A_{i_2} < \dots$ means that:
 - we can have different utility values $u(A_i) \in [0,1]$
 - as long as these utility values are consistent with this ranking:

$$u(A_{i_1}) < u(A_{i_2}) < \dots$$

What Information Can. Ranking-Based . . . Why Borda Count? How to Describe . . . Utility-Based Decision How to Make a Group. Case of Transferable... Maximum Entropy . . . Home Page Title Page **>>** Page 22 of 28 Go Back Full Screen Close Quit

22. Ranking-Based Voting (cont-d)

- In line with the above description of decision making under uncertainty:
 - to find an actual utility of each alternative for this participant,
 - we must find the expected value of the corresponding utility $u(A_i)$.
- To find this expected value, we need to select some probability distribution on the set of all possible tuples.

23. Maximum Entropy Approach: Idea

- There may be many different probability distributions on the set of all the property ordered tuples.
- We need to select one of them.
- Some of these distributions may have more uncertainty, some less.
- A reasonable idea is to keep the original uncertainty and not to add artificial certainty.
- So, we select, among all possible distributions, a distribution with the largest possible value of uncertainty.
- A natural measure of this uncertainty is the entropy.
- So, we select the distribution with the largest possible value of the entropy.

24. What Happens When We Apply the Maximum Entropy Approach

- The largest possible entropy is attained for a uniform distribution on the set of all the tuples.
- Known: for k alternatives $A_{i_1} < A_{i_2} < \ldots < A_{i_k}$, the resulting expected utility values $\overline{u}(A_i)$ are

$$\overline{u}_i(A_{i_q}) = \frac{q}{k+1}.$$

- For each alternative $A_j = A_{i_q}$:
 - its Borda count b_{ij} for this participant i is its number of worse-then- A_i alternatives,
 - so, it is equal to $b_{ij} = q 1$.
- Thus, $q = b_{ij} + 1$, and in terms of this Borda count, the expected utility of each alternative A_j is equal to

$$\overline{u}_i(A_j) = \frac{b_{ij} + 1}{k+1}.$$

Need for Voting and . . .

What Information Can . . .

Ranking-Based . . .

Why Borda Count?

How to Describe...

Utility-Based Decision...

How to Make a Group...

Case of Transferable...

Maximum Entropy . . .

Home Page

Title Page

Page 25 of 28

Go Back

Full Screen

Close

Quit

- We consider the case of transferable utility.
- So, we must select the alternative A_j for which the sum $\sum_{i=1}^{n} u_i(A_j)$ of the utilities is the largest possible.
- In our case, this means that we compare the values

$$\sum_{i=1}^{n} \overline{u}_{i}(A_{j}) = \sum_{i=1}^{n} \frac{b_{ij} + 1}{k+1}.$$

• This sum is, in its turn, equal to

$$\sum_{i=1}^{n} \frac{b_{ij}+1}{k+1} = \frac{1}{k+1} \cdot \sum_{i=1}^{n} b_{ij} + \frac{n}{k+1}.$$

• Thus, the largest value of this sum corresponds to the largest value of the Borda sum $\sum_{i=1}^{n} b_{ij}$.

Need for Voting and . . . What Information Can . . .

Ranking-Based . . .

Why Borda Count?

How to Describe . . .
Utility-Based Decision . .

How to Make a Group...

Case of Transferable...

Maximum Entropy...

Home Page

Title Page

Page 26 of 28

Go Back

Full Screen

Close

Quit

26. Comment: in the Simplest Selection Case, We Get a Version of the Borda Count

- What if we have a simple selection?
- In this case, we should select the alternative A_j for which the *product* is the largest:

$$\prod_{i=1}^{n} \overline{u}_{i}(A_{j}) = \prod_{i=1}^{n} \frac{b_{ij} + 1}{k+1}.$$

• This, in its turn, is equivalent to maximizing the product $\prod_{i=1}^{n} (b_{ij} + 1)$, or, alternatively, to maximizing:

$$\sum_{i=1}^{n} \ln(b_{ij}+1).$$

27. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- and HRD-1242122 (Cyber-ShARE Center of Excellence).

Need for Voting and . . . What Information Can. Ranking-Based . . . Why Borda Count? How to Describe . . . Utility-Based Decision How to Make a Group. Case of Transferable . . . Maximum Entropy . . . Home Page Title Page 44 Page 28 of 28 Go Back Full Screen Close Quit