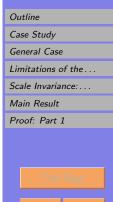
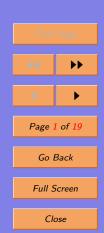
Selecting the Best Location for a Meteorological Tower: A Case Study of Multi-Objective Constraint Optimization

Aline Jaimes, Craig Tweedy, Tanja Magoc, Vladik Kreinovich, and Martine Ceberio Cyber-ShARE Center University of Texas, El Paso, TX 79968, USA contact email vladik@utep.edu





1. Outline

- Case study: meteorological tower.
- This case is an example of multi-criteria optimization, when we need to maximize several objectives x_1, \ldots, x_n .
- Traditional approach to multi-objective optimization: maximize a weighted combination $\sum_{i=1}^{n} w_i \cdot x_i$.
- Specifics of our case: constraints $x_i > x_i^{(0)}$ or $x_i < x_i^{(0)}$.
- Equiv.: $y_i > 0$, where $y_i \stackrel{\text{def}}{=} x_i x_i^{(0)}$ or $y_i = x_i^{(0)} x_i$.
- Limitations of using the traditional approach under constraints.
- Scale invariance: a brief description.
- Main result: scale invariance leads to a new approach: maximize $\sum_{i=1}^{n} w_i \cdot \ln(y_i) = \sum_{i=1}^{n} w_i \cdot \ln |x_i x_i^{(0)}|$.

Outline

Case Study

General Case

Limitations of the . . .

Scale Invariance: . . .

Main Result

Proof: Part 1

Title Page

Page 2 of 19

Go Back

Full Screen

Close

2. Case Study

- Objective: select the best location of a sophisticated multi-sensor meteorological tower.
- Constraints: we have several criteria to satisfy.
- Example: the station should not be located too close to a road.
- *Motivation:* the gas flux generated by the cars do not influence our measurements of atmospheric fluxes.
- Formalization: the distance x_1 to the road should be larger than a threshold t_1 : $x_1 > t_1$, or $y_1 \stackrel{\text{def}}{=} x_1 t_1 > 0$.
- Example: the inclination x_2 at the tower's location should be smaller than a threshold t_2 : $x_2 < t_2$.
- *Motivation:* otherwise, the flux determined by this inclination and not by atmospheric processes.

3. General Case

- In general: we have several differences y_1, \ldots, y_n all of which have to be non-negative.
- For each of the differences y_i , the larger its value, the better.
- Our problem is a typical setting for multi-criteria optimization.
- A most widely used approach to multi-criteria optimization is weighted average, where
 - we assign weights $w_1, \ldots, w_n > 0$ to different criteria y_i and
 - select an alternative for which the weighted average

$$w_1 \cdot y_1 + \ldots + w_n \cdot y_n$$

attains the largest possible value.

4. Limitations of the Weighted Average Approach

- In general: the weighted average approach often leads to reasonable solutions of the multi-criteria problem.
- In our problem: we have an additional requirement that all the values y_i must be positive. So:
 - when selecting an alternative with the largest possible value of the weighted average,
 - we must only compare solutions with $y_i > 0$.
- We will show: under the requirement $y_i > 0$, the weighted average approach is not fully satisfactory.
- Conclusion: we need to find a more adequate solution.

5. Limitations of the Weighted Average Approach: Details

- The values y_i come from measurements, and measurements are never absolutely accurate.
- The results \widetilde{y}_i of the measurements are not exactly equal to the actual (unknown) values y_i .
- If: for some alternative $y = (y_1, \dots, y_n)$
 - we measure the values y_i with higher and higher accuracy and,
 - based on the measurement results \tilde{y}_i , we conclude that y is better than some other alternative y'.
- Then: we expect that the actual alternative y is indeed better than y' (or at least of the same quality).
- Otherwise, we will not be able to make any meaningful conclusions based on real-life measurements.

6. The Above Natural Requirement Is Not Always Satisfied for Weighted Average

- Simplest case: two criteria y_1 and y_2 , w/weights $w_i > 0$.
- If $y_1, y_2, y_1', y_2' > 0$, and $w_1 \cdot y_1 + w_2 \cdot y_2 > w_1 \cdot y_1' + w_2 \cdot y_2'$, then $y = (y_1, y_2) \succ y' = (y_1', y_2')$.
- If $y_1 > 0$, $y_2 > 0$, and at least one of the values y_1' and y_2' is non-positive, then $y = (y_1, y_2) \succ y' = (y_1', y_2')$.
- Let us consider, for every $\varepsilon > 0$, the tuple $y(\varepsilon) \stackrel{\text{def}}{=} (\varepsilon, 1 + w_1/w_2)$, and y' = (1, 1).
- In this case, for every $\varepsilon > 0$, we have $w_1 \cdot y_1(\varepsilon) + w_2 \cdot y_2(\varepsilon) = w_1 \cdot \varepsilon + w_2 + w_2 \cdot \frac{w_1}{w_2} = w_1 \cdot (1+\varepsilon) + w_2$ and $w_1 \cdot y_1' + w_2 \cdot y_2' = w_1 + w_2$, hence $y(\varepsilon) \succ y'$.
- However, in the limit $\varepsilon \to 0$, we have $y(0) = \left(0, 1 + \frac{w_1}{w_2}\right)$, with $y(0)_1 = 0$ and thus, $y(0) \prec y'$.

Outline

Case Study

General Case

Limitations of the . . .

Scale Invariance: . . .

Main Result

Proof: Part 1

Title Page

Page 7 of 19

Go Back

Full Screen

Close

7. Towards a Precise Description

- Each alternative is characterized by a tuple of n positive values $y = (y_1, \ldots, y_n)$.
- Thus, the set of all alternatives is the set $(R^+)^n$ of all the tuples of positive numbers.
- For each two alternatives y and y', we want to tell whether
 - -y is better than y' (we will denote it by $y \succ y'$ or $y' \prec y$),
 - or y' is better than $y (y' \succ y)$,
 - or y and y' are equally good $(y' \sim y)$.
- Natural requirement: if y is better than y' and y' is better than y'', then y is better than y''.
- The relation \succ must be transitive.

8. Towards a Precise Description (cont-d)

- Reminder: the relation \succ must be transitive.
- Similarly, the relation \sim must be transitive, symmetric, and reflexive $(y \sim y)$, i.e., be an equivalence relation.
- An alternative description: a transitive pre-ordering relation $a \succeq b \Leftrightarrow (a \succ b \lor a \sim b)$ s.t. $a \succeq b \lor b \succeq a$.
- Then, $a \sim b \Leftrightarrow (a \succeq b) \& (b \succeq a)$, and

$$a \succ b \Leftrightarrow (a \succeq b) \& (b \not\succeq a).$$

- Additional requirement:
 - -if each criterion is better,
 - then the alternative is better as well.
- Formalization: if $y_i > y'_i$ for all i, then $y \succ y'$.

9. Scale Invariance: Motivation

- Fact: quantities y_i describe completely different physical notions, measured in completely different units.
- Examples: wind velocities measured in m/s, km/h, mi/h; elevations in m, km, ft.
- Each of these quantities can be described in many different units.
- A priori, we do not know which units match each other.
- Units used for measuring different quantities may not be exactly matched.
- It is reasonable to require that:
 - if we simply change the units in which we measure each of the corresponding n quantities,
 - the relations \succ and \sim between the alternatives $y = (y_1, \ldots, y_n)$ and $y' = (y'_1, \ldots, y'_n)$ do not change.

10. Scale Invariance: Towards a Precise Description

- Situation: we replace:
 - \bullet a unit in which we measure a certain quantity q
 - by a new measuring unit which is $\lambda > 0$ times smaller.
- Result: the numerical values of this quantity increase by a factor of λ : $q \to \lambda \cdot q$.
- Example: 1 cm is $\lambda = 100$ times smaller than 1 m, so the length q = 2 becomes $\lambda \cdot q = 2 \cdot 100 = 200$ cm.
- Then, scale-invariance means that for all $y, y' \in (R^+)^n$ and for all $\lambda_i > 0$, we have
 - $y = (y_1, \dots, y_n) \succ y' = (y'_1, \dots, y'_n)$ implies $(\lambda_1 \cdot y_1, \dots, \lambda_n \cdot y_n) \succ (\lambda_1 \cdot y'_1, \dots, \lambda_n \cdot y'_n),$
 - $y = (y_1, \dots, y_n) \sim y' = (y'_1, \dots, y'_n)$ implies $(\lambda_1 \cdot y_1, \dots, \lambda_n \cdot y_n) \sim (\lambda_1 \cdot y'_1, \dots, \lambda_n \cdot y'_n)$.

11. Formal Description

- \bullet By a total pre-ordering relation on a set Y, we mean
 - a pair of a transitive relation \succ and an equivalence relation \sim for which,
 - for every $y, y' \in Y$, exactly one of the following relations hold: $y \succ y', y' \succ y$, or $y \sim y'$.
- We say that a total pre-ordering is non-trivial if there exist y and y' for which $y \succ y'$.
- We say that a total pre-ordering relation on $(R^+)^n$ is:
 - monotonic if $y'_i > y_i$ for all i implies $y' \succ y$;
 - continuous if
 - * whenever we have a sequence $y^{(k)}$ of tuples for which $y^{(k)} \succeq y'$ for some tuple y', and
 - * the sequence $y^{(k)}$ tends to a limit y,
 - * then $y \succeq y'$.

12. Main Result

Theorem. Every non-trivial monotonic scale-inv. continuous total pre-ordering relation on $(R^+)^n$ has the form:

$$y' = (y'_1, \dots, y'_n) \succ y = (y_1, \dots, y_n) \Leftrightarrow \prod_{i=1}^n (y'_i)^{\alpha_i} > \prod_{i=1}^n y_i^{\alpha_i};$$

$$y' = (y'_1, \dots, y'_n) \sim y = (y_1, \dots, y_n) \Leftrightarrow \prod_{i=1}^n (y'_i)^{\alpha_i} = \prod_{i=1}^n y_i^{\alpha_i},$$

for some constants $\alpha_i > 0$.

Comment: Vice versa,

- for each set of values $\alpha_1 > 0, \ldots, \alpha_n > 0$,
- the above formulas define a monotonic scale-invariant continuous pre-ordering relation on $(R^+)^n$.

13. Practical Conclusion

- Situation:
 - we need to select an alternative;
 - each alternative is characterized by characteristics y_1, \ldots, y_n .
- Traditional approach:
 - we assign the weights w_i to different characteristics;
 - we select the alternative with the largest value of $\sum_{i=1}^{n} w_i \cdot y_i.$
- New result: it is better to select an alternative with the largest value of $\prod_{i=1}^{n} y_i^{w_i}$.
- Equivalent reformulation: select an alternative with the largest value of $\sum_{i=1}^{n} w_i \cdot \ln(y_i)$.

14. Acknowledgments

This work was supported in part by:

- by National Science Foundation grants HRD-0734825 and DUE-0926721,
- by Grant 1 T36 GM078000-01 from the National Institutes of Health, and
- by Grant 5015 from the Science and Technology Centre in Ukraine (STCU), funded by European Union.

15. Proof: Part 1

• Due to scale-invariance, for every $y_1, \ldots, y_n, y'_1, \ldots, y'_n$, we can take $\lambda_i = \frac{1}{y_i}$ and conclude that

$$(y_1',\ldots,y_n') \sim (y_1,\ldots,y_n) \Leftrightarrow \left(\frac{y_1'}{y_1},\ldots,\frac{y_n'}{y_n}\right) \sim (1,\ldots,1).$$

- Thus, to describe the equivalence relation \sim , it is sufficient to describe $\{z = (z_1, \ldots, z_n) : z \sim (1, \ldots, 1)\}.$
- Similarly,

$$(y_1',\ldots,y_n') \succ (y_1,\ldots,y_n) \Leftrightarrow \left(\frac{y_1'}{y_1},\ldots,\frac{y_n'}{y_n}\right) \succ (1,\ldots,1).$$

- Thus, to describe the ordering relation \succ , it is sufficient to describe the set $\{z = (z_1, \ldots, z_n) : z \succ (1, \ldots, 1)\}.$
- Similarly, it is also sufficient to describe the set

$${z = (z_1, \ldots, z_n) : (1, \ldots, 1) \succ z}.$$

Outline

Case Study

General Case

Limitations of the . . .

Scale Invariance: . . .

Main Result

Proof: Part 1

Title Page

>>

Go Back

Full Screen

Close

16. Proof: Part 2

• To simplify: take logarithms $Y_i = \ln(y_i)$, and sets

$$S_{\sim} = \{Z : z = (\exp(Z_1), \dots, \exp(Z_n)) \sim (1, \dots, 1)\},\$$

 $S_{\succ} = \{Z : z = (\exp(Z_1), \dots, \exp(Z_n)) \succ (1, \dots, 1)\};\$
 $S_{\prec} = \{Z : (1, \dots, 1) \succ z = (\exp(Z_1), \dots, \exp(Z_n))\}.$

- Since the pre-ordering relation is total, for Z, either $Z \in S_{\sim}$ or $Z \in S_{\sim}$ or $Z \in S_{\sim}$.
- Lemma: S_{\sim} is closed under addition:
 - $Z \in S_{\sim}$ means $(\exp(Z_1), \dots, \exp(Z_n)) \sim (1, \dots, 1);$
 - due to scale-invariance, we have

$$(\exp(Z_1+Z_1'),\ldots)=(\exp(Z_1)\cdot\exp(Z_1'),\ldots)\sim(\exp(Z_1'),\ldots);$$

- also, $Z' \in S_{\sim}$ means $(\exp(Z'_1), \ldots) \sim (1, \ldots, 1);$
- since \sim is transitive, $(\exp(Z_1 + Z_1'), \ldots) \sim (1, \ldots)$ so $Z + Z' \in S_{\sim}$.

Outline

Case Study

General Case

Limitations of the . . .

Scale Invariance: . . .

Main Result

Proof: Part 1

Title Page

Page 17 of 19

Go Back

Full Screen

Close

17. Proof: Part 3

- Reminder: the set S_{\sim} is closed under addition;
- Similarly, S_{\prec} and S_{\succ} are closed under addition.
- Conclusion: for every integer q > 0:
 - if $Z \in S_{\sim}$, then $q \cdot Z \in S_{\sim}$;
 - if $Z \in S_{\succ}$, then $q \cdot Z \in S_{\succ}$;
 - if $Z \in S_{\prec}$, then $q \cdot Z \in S_{\prec}$.
- Thus, if $Z \in S_{\sim}$ and $q \in N$, then $(1/q) \cdot Z \in S_{\sim}$.
- We can also prove that S_{\sim} is closed under $Z \to -Z$:
 - $Z = (Z_1, ...) \in S_{\sim} \text{ means } (\exp(Z_1), ...) \sim (1, ...);$
 - by scale invariance, $(1, ...) \sim (\exp(-Z_1), ...)$, i.e., $-Z \in S_{\sim}$.
- Similarly, $Z \in S_{\succ} \Leftrightarrow -Z \in S_{\prec}$.
- So $Z \in S_{\sim} \Rightarrow (p/q) \cdot Z \in S_{\sim}$; in the limit, $x \cdot Z \in S_{\sim}$.

Outline Case Study General Case Limitations of the . . . Scale Invariance: . . . Main Result Proof: Part 1 Title Page 44 **>>** Page 18 of 19 Go Back Full Screen Close

18. Proof: Final Part

- Reminder: S_{\sim} is closed under addition and multiplication by a scalar, so it is a linear space.
- Fact: S_{\sim} cannot have full dimension n, since then all alternatives will be equivalent to each other.
- Fact: S_{\sim} cannot have dimension < n-1, since then:
 - we can select an arbitrary $Z \in S_{\prec}$;
 - connect it $w/-Z \in S_{\succ}$ by a path γ that avoids S_{\sim} ;
 - due to closeness, $\exists \gamma(t^*)$ in the limit of S_{\succ} and S_{\prec} ;
 - thus, $\gamma(t^*) \in S_{\sim}$ a contradiction.
- Every (n-1)-dim lin. space has the form $\sum_{i=1}^{n} \alpha_i \cdot Y_i = 0$.
- Thus, $Y \in S_{\succ} \Leftrightarrow \sum \alpha_i \cdot Y_i > 0$, and $y \succ y' \Leftrightarrow \sum \alpha_i \cdot \ln(y_i/y_i') > 0 \Leftrightarrow \prod y_i^{\alpha_i} > \prod y_i'^{\alpha_i}.$

Outline

Case Study

General Case

Limitations of the...

Scale Invariance:...

Main Result

Proof: Part 1

Title Page

Page 19 of 19

Go Back

Full Screen
Close