Towards a Physically Meaningful Definition of Computable Discontinuous and Multi-Valued Functions (Constraints)

Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

> University of Texas at El Paso El Paso, Texas 79968, USA mceberio@utep.edu, olgak@utep.edu vladik@utep.edu

Computable Numbers Computable Functions Computable Compact Set Analysis of the Problem Additional Problem: . . . Resulting Definition Main Result Inverse Relations: . . . Home Page **>>** Page 1 of 15 Go Back Full Screen Close Quit

1. Need to Define Computable Discontinuous Functions

- Many physical phenomena include discontinuous dependencies y = f(x) ("jumps").
- Examples: phase transitions, quantum transitions.
- In other physical situations, for some values x, we may have several possible values y.
- From the mathematical viewpoint, this means that the relation between x and y is no longer a function.
- It is a relation, aka constraint $R \subseteq X \times Y$, or a multivalued function.
- We thus need to know when a discontinuous and/or multi-valued function to be computable.
- Alas, the current definitions of computable functions are mostly limited to continuous case.

Need to Define . . . Computable Numbers. Computable Functions Computable Compact Set Analysis of the Problem Additional Problem: . . . Resulting Definition Main Result Inverse Relations: . . . Home Page Title Page **>>** Page 2 of 15 Go Back Full Screen Close Quit

2. Computable Numbers and Metric Spaces: Reminder

- Intuitively, a real number x is computable if we can compute it with any desired accuracy.
- Formally, x is *computable* if \exists an algorithm that, given $n \in \mathbb{N}$, returns a rational number r_n s.t. $|x r_n| \leq 2^{-n}$.
- A similar notion of computable elements can be defined for general metric spaces.
- At each moment of time, we only have a finite amount of information about x.
- Based on this information, we produce an approximation corresponding to this information.
- Any information can be represented, in the computer, as a sequence of 0s and 1s.

3. Computable Metric Spaces (cont-d)

- Any 0-1 sequence can be, in turn, interpreted as a binary integer n.
- Let \widetilde{x}_n denote an approximation corresponding to an integer n.
- So, we require that in a computable metric space, there is a sequence of such approximating elements $\{\widetilde{x}_n\}$.
- Computable means, in particular, that the distance $d_X(\widetilde{x}_n, \widetilde{x}_m)$ between such elements should be computable.
- A metric space X with a sequence $\{\widetilde{x}_n\}$ is called *computable* if \exists an algorithm $m, n \to d_X(\widetilde{x}_m, \widetilde{x}_n)$.
- An element $x \in X$ is called *computable* if there exists an algorithm $n \to k_n$ s.t. $d_X(\widetilde{x}_{k_n}, x) \le 2^{-n}$.

4. Computable Functions

- A f-n $f: X \to Y$ from comp. metric space X to comp. metric space Y is *computable* if \exists algorithm s.t.:
 - it uses x as an input, and
 - it computes, for each integer n, a 2^{-n} -approximation y_k to f(x).
- By "uses x as an input", we mean that this algorithm can request, for each m, a 2^{-m} -approximation x_{ℓ} to x.
- Alas, all the functions computable according to this definition are continuous.
- Thus, we cannot use this definition to check how well we can compute a discontinuous function.

5. Continuity Explained

- Continuity of continuous functions is easy to understand.
- Lets us consider a simple discontinuous function f(x) = sign(x):
 - sign(x) = 1 for x > 0;
 - $\operatorname{sign}(x) = 0$ for x = 0;
 - $\operatorname{sign}(x) = -1$ for x < 0.
- Let us assume that we can compute sign(x) with accuracy 2^{-2} .
- Then we would be able, given a comp. real number x, to tell whether x = 0.
- This is known to be algorithmically impossible.

Computable Numbers Computable Functions Computable Compact Set Analysis of the Problem Additional Problem: . . . Resulting Definition Main Result Inverse Relations: . . . Home Page Title Page **>>** Page 6 of 15 Go Back Full Screen Close Quit

6. Computable Compact Set

- In analyzing computability, it is often useful to start with pre-compact metric spaces X, where:
 - for every positive real number $\varepsilon > 0$,
 - there exists a finite ε -net L, i.e.,

$$\forall x \in X \, \exists y \in L \, (d_X(x,y) \le \varepsilon).$$

- A pre-compact set is *compact* if every converging sequence has a limit.
- A compact metric space X computable compact if:
 - -X is a computable metric space, and
 - there exists an algorithm that, given an integer n, returns a 2^{-n} -net L_n for X.

7. Simplifying Comment

- \bullet Functions can also be undefined for some inputs x.
- This is easy to repair: if a relation is not everywhere defined:
 - we can make it everywhere defined
 - if we consider, instead of the original set X, a projection of R on this set.
- For example, a function \sqrt{x} :
 - is not everywhere defined on the real line, but
 - it is everywhere defined on the set of all non-negative real numbers.
- Thus, without losing generality, we can assume that our relation R is everywhere defined:

$$\forall x \in X \,\exists y \in Y \, ((x,y) \in R).$$

Need to Define . . . Computable Numbers. Computable Functions Computable Compact Set Analysis of the Problem Additional Problem: . . . Resulting Definition Main Result Inverse Relations: . . . Home Page Title Page **>>** Page 8 of 15 Go Back Full Screen Close

Quit

8. Analysis of the Problem

- From the physical viewpoint, what does it mean that the dependence between x and y is computable?
- For a multi-valued function, for the same input x, we may get several different values y.
- In this case, it is desirable to compute the set of all possible value y corresponding to a given x.
- For compact Y, the set of x-possible values of y is precompact.
- Thus, with any given accuracy, this set can be described by a finite list L of possible values:
 - if y is a possible value of f(x), then y should be close to one of the values from L;
 - vice versa, each value from L should be close to some f(x).

9. Additional Problem: Discontinuity

- Let us consider f(x) = sign(x).
- \bullet At each stage of the computation, we only know an approximate value of x.
- So, even when actually x = 0, we cannot exclude that x > 0 or x < 0, so all 3 values $(0, \pm 1)$ are possible.
- In general, we need to take into account not only f(x) but also f(x') for close x'.
- In view of this, the above properties of the list L must be appropriately modified:
 - if y is a possible value of f(x') for some $x' \approx x$, then y should be close to one of the values from L;
 - for every value from L, there must exist a close y which is a possible value of f(x') for some $x' \approx x$.

- Let X and Y be computable compact sets with metrics d_X and d_Y .
- An everywhere defined relation $R \subseteq X \times Y$ is called *computable* if there exists an algorithm that:
 - given a computable element $x \in X$ and computable positive numbers $0 < \varepsilon < \varepsilon'$ and $0 < \delta$,
 - produces a finite list $\{y_1, \ldots, y_m\} \subseteq Y$

such that:

- (1) if $(x', y) \in R$ for some x' for which $d_X(x', x) \leq \varepsilon$, then there exists an i for which $d_Y(y, y_i) \leq \delta$;
- (2) \forall element y_i from this list, \exists values x' and y for which $d_X(x,x') \leq \varepsilon'$, $d_Y(y_i,y) \leq \delta$, and $(x',y) \in R$.

Computable Numbers. Computable Functions Computable Compact Set Analysis of the Problem Additional Problem: . . . Resulting Definition Main Result Inverse Relations: . . . Home Page Title Page **>>** Page 11 of 15 Go Back Full Screen Close Quit

11. Main Result

- Let X, Y be metric spaces with metrics d_X and d_Y .
- Their Cartesian product $X \times Y$ is the set of all pairs $(x,y), x \in X$ and $y \in Y$, with metric

$$d_{X\times Y}((x,y),(x',y')) \stackrel{\text{def}}{=} \max(d_X(x,x'),d_Y(y,y')).$$

- One can check that if X and Y are both compact sets, then the product $X \times Y$ is also a compact set.
- Proposition.
 - Let X and Y be computable compact sets.
 - A relation $R \subseteq X \times Y$ is computable if and only if the set R is a computable compact set.
- So, computability is equivalent to constructive compactness of the graph of R.

12. Inverse Relations: Corollary

• An inverse relation can be defined as

$$R^{-1} = \{(x, y) : (y, x) \in R\}.$$

- This is a natural generalization of the notion of an inverse function; for example:
 - $\pm \sqrt{x}$ is inverse to x^2 :
 - ln(x) is inverse to exp(x);
 - $\arcsin(x)$ is inverse to $\sin(x)$.
- Corollary.
 - If the range of R is the whole set Y,
 - then a multi-valued function (relation) R is computable if and only if its inverse is computable.

13. Acknowledgments

This work was supported in part:

- by NSF grants HRD-1242122 and DUE-0926721,
- by NIH Grants 1 T36 GM078000-01 and 1R43TR000173-01, and
- by an ONR grant N62909-12-1-7039.

Computable Numbers Computable Functions Computable Compact Set Analysis of the Problem Additional Problem: . . . Resulting Definition Main Result Inverse Relations: . . . Home Page Title Page **>>** Page 14 of 15 Go Back Full Screen Close Quit

14. Idea of The Proof

- \Leftarrow Let R be a computable compact set, let x be a computable element of X, and let $\varepsilon < \varepsilon'$.
 - Then, \exists computable $\varepsilon_0 \in (\varepsilon, \varepsilon')$ s.t. $S \stackrel{\text{def}}{=} \{(x', y) \in R : d_X(x, x') \leq \varepsilon_0\}$ is a computable compact.
 - Thus, for a given computable $\delta > 0$, there exists a finite δ -net $L = \{(x_1, y_1), \dots, (x_m, y_m)\}$ for S.
 - One can then prove that the list $\{y_1, \ldots, y_m\}$ satisfies the desired properties of a computable f-n for f(x).
- \Rightarrow Vice versa, let R is a computable function.
 - Since X is a compact, it has an α -net $\{x_1, \ldots, x_k\}$.
 - For each i, we have a list $\{y_{i1}, \ldots, y_{im_i}\}$ which α -approximates $f(x_i)$.
 - Then, the pairs (x_i, y_{ij}) form an α -net for the set R.

Need to Define . . .
Computable Numbers . . .
Computable Functions
Computable Compact Set
Analysis of the Problem
Additional Problem: . . .
Resulting Definition
Main Result
Inverse Relations: . . .

Home Page

Title Page

Page 15 of 15

Go Back

Full Screen

Close

Quit