Comparisons of Measurement Results as Constraints on Accuracies of Measuring Instruments: When Can We Determine the Accuracies from These Constraints?

Christian Servin¹ and Vladik Kreinovich²

¹Information Technology Department El Paso Community College 919 Hunter, El Paso TX 79915, USA cservin@gmail.com ²Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA vladik@utep.edu

Need to Determine . . . How Accuracies Are... What If We Do Not ... What is Known: Case What If Distributions Idea: Let Us Use . . . Case When Have... When the Probability . . . Case of Different . . . Home Page **>>** Page 1 of 16 Go Back Full Screen Close Quit

- Measurement results are never absolutely accurate.
- The measurement result \tilde{x} is, in general, different from the actual (unknown) value x of the corr. quantity.
- To properly process data, it is therefore important to know how accurate are our measurements.
- Ideally, we would like to know:
 - what are the possible values of measurement errors $\Delta x \stackrel{\text{def}}{=} \widetilde{x} x$, and
 - how frequent are different possible values of Δx .
- In other words, we would like to know the probability distribution on the set of all possible values of Δx .

How Accuracies Are . . . What If We Do Not ... What is Known: Case What If Distributions . . . Idea: Let Us Use . . . Case When Have ... When the Probability . . . Case of Different . . . Home Page Title Page **>>** Page 2 of 16 Go Back Full Screen Close Quit

2. How Accuracies Are Usually Determined: by Using a Second, Much More Accurate Measuring Instrument

- A usual way to find the desired probability distribution is:
 - to have a second measuring instrument
 - which is much more accurate than the one that we want to estimate.
- In this case, the measurement error $\Delta x_2 = \tilde{x}_2 x$ of this second instrument is much smaller than $\Delta x = \tilde{x} x$.
- Thus, the difference $\widetilde{x} \widetilde{x}_2 = (\widetilde{x} x) (\widetilde{x}_2 x) \approx \Delta x$ can serve as a good approximation to Δx .
- From the sample of such differences, we can therefore find the desired probability distribution for Δx .

3. What If We Do Not Have a More Accurate Measuring Instrument?

- But what if the measuring instrument whose accuracy we want to estimate is among the best?
- In this case, we do not have a much more accurate measuring instrument.
- What can we do in this case?
- Usually, there are *several* measuring instrument of the type that we want to analyze.
- Due to measurement errors, for same quantity, these instruments produce different measurement results.
- Let's try to extract the measurement accuracy from the differences between these measurement results.

4. Two Possible Situations

- In some cases, we have a stable manufacturing process.
- This process produces several practical identical measuring instruments.
- For these instruments, the probability distributions of measurement error are the same.
- In such cases, all we need to find is this common probability distribution.
- In other cases, we cannot ignore the differences between different instruments.
- In such cases, for each individual measuring instrument, we need to find its own probability distribution.

5. What is Known: Case of Normal Distribution

- Often, the measurement error is caused by the joint effect of numerous independent small factors.
- In such situations, the Central Limit Theorem implies that this distribution is close to Gaussian.
- A Gaussian distribution is uniquely determined by its mean (bias) and standard deviation σ .
- When we only know the differences, we cannot determine the bias:
 - it could be that all the measuring instruments have the same bias, and
 - we will never determine that since we only see the differences.
- Thus, we should limit ourselves to the random component $\Delta x E[\Delta x]$ of the measurement error.

6. Case of Normal Distribution (cont-d)

- For this "re-normalized" measurement error Δx , the mean is 0, so, all we need to determine is σ .
- For two identical independent instruments, $\widetilde{x}_2 \widetilde{x}_1$ is also normal, with variance $V = \sigma^2 + \sigma^2 = 2\sigma^2$.
- Thus, once we experimentally determine the variance V of $\widetilde{x}_2 \widetilde{x}_1$, we can compute $\sigma^2 = \frac{V}{2}$.
- When instruments are different, the variance of $\widetilde{x}_i \widetilde{x}_j$ is equal to $V_{ij} = \sigma_i^2 + \sigma_j^2$.
- Thus, for empirical variances V_{12} , V_{23} , and V_{13} , we have: $V_{12} = \sigma_1^2 + \sigma_2^2$, $V_{23} = \sigma_2^2 + \sigma_3^2$, $V_{13} = \sigma_1^2 + \sigma_3^2$.

• So, we can compute
$$\sigma_1^2 = \frac{V_{12} + V_{13} - V_{23}}{2}$$
, $\sigma_2^2 = \frac{V_{12} + V_{23} - V_{13}}{2}$, and $\sigma_3^2 = \frac{V_{13} + V_{23} - V_{12}}{2}$.

7. What If Distributions Are Not Gaussian?

- Empirical analysis shows that only slightly more than a half of instruments have Gaussian measurement errors.
- What happens in the non-Gaussian case?
- It is known that, sometimes, we simply cannot uniquely reconstruct the corresponding distributions.
- In this talk, we explain when such a reconstruction is possible and when it is not possible.

8. Idea: Let Us Use Moments

- A Gaussian distribution with zero mean is uniquely determined by its second moment $M_2 = \sigma^2$.
- This means that all higher moments $M_k \stackrel{\text{def}}{=} E[(\Delta x)^k]$ are uniquely determined by the value M_2 .
- In general, we may have values of M_k which are different from the corresponding Gaussian values.
- Thus, to describe a general distribution, in addition to M_2 , we also need to describe M_3 , M_4 , ...
- If we know all the moments, then we can uniquely determine the corresponding probability distribution.
- Indeed, the usual way to represent a random variable Δx is by its pdf $\rho(\Delta x)$.

9. Let Us Use Moments (cont-d)

• In many situations, it is convenient to use its *characteristic function*

$$\chi(\omega) \stackrel{\text{def}}{=} E[\exp(i \cdot \omega \cdot \Delta x)] = \int \rho(\Delta x) \cdot \exp(i \cdot \omega \cdot \Delta x) \, d(\Delta x).$$

- From the mathematical viewpoint, the characteristic function is the Fourier transform of the pdf.
- It is known that we can uniquely reconstruct a function from its Fourier transform: by inverse transform.
- On the other hand,

$$\exp(z) = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^k}{k!} + \dots$$
, so $\chi(\omega) = 1 - \frac{1}{2} \cdot \omega^2 \cdot M_2 + \dots + \frac{i^k}{k!} \cdot \omega^k \cdot M_k + \dots$

• If we know M_k , then we know $\chi(\omega)$, hence $\rho(x)$.

How Accuracies Are . . . What If We Do Not... What is Known: Case . . What If Distributions . . . Idea: Let Us Use . . . Case When Have . . . When the Probability . . . Case of Different . . . Home Page Title Page **>>** Page 10 of 16 Go Back Full Screen Close Quit

Important Fact: For a Symmetric Distribu-10. tion, Odd Moments Are Zeros

• For a symmetric distribution, for which $\rho(-\Delta x) =$ $\rho(\Delta x)$, all odd moments M_{2s+1} are equal to 0:

$$M_{2s+1} = \int \rho(\Delta x) \cdot (\Delta x)^{2s+1} d(\Delta x).$$

• Indeed, if we replace Δx to $\Delta x' \stackrel{\text{def}}{=} -\Delta x$, then $d(\Delta x) =$ $-d(\Delta x')$, $(\Delta x)^{2s+1} = -(\Delta x')^{2s+1}$ and thus, the above integral takes the form

$$M_{2s+1} = -\int \rho(-\Delta x') \cdot (\Delta x')^{2s+1} d(\Delta x') =$$
$$-\int \rho(\Delta x') \cdot (\Delta x')^{2s+1} d(\Delta x').$$

• So $M_{2s+1} = -M_{2s+1}$ and hence, $M_{2s+1} = 0$.

How Accuracies Are . . . What If We Do Not... What is Known: Case... What If Distributions . . . Idea: Let Us Use . . . Case When Have . . . When the Probability . . . Case of Different . . . Home Page Title Page Page 11 of 16

Need to Determine . . .

Go Back

>>

Full Screen

Close

Quit

11. Case When Have Several Identical Measuring Instruments

- In this case, all measuring instruments have the same moments $M_k = E[(\Delta x)^k]$.
- The only available information consists of the differences $\Delta x_1 \Delta x_2 = \widetilde{x}_1 \widetilde{x}_2$.
- We can thus determine the moments $M'_k = E[(\Delta x_1 \Delta x_2)^k].$
- We would like to find M_k .
- For k = 2, we have $M'_2 = 2M_2$, so $M_2 = 0.5M'_2$.
- For k=3, we get $M_3'=0$.
- So, the only case when we can reconstruct M_3 is when we know it already.
- One such case is when we know that the distribution is symmetric.

How Accuracies Are . . . What If We Do Not ... What is Known: Case . . What If Distributions . . . Idea: Let Us Use . . . Case When Have . . . When the Probability . . . Case of Different . . . Home Page Title Page **>>** Page 12 of 16 Go Back Full Screen Close Quit

12. When the Probability Distribution of the Measurement Error Is Symmetric

- For a symmetric distribution, all odd moments are equal to 0.
- Thus, to uniquely determine a symmetric distribution, it is sufficient to determine all its even moments M_{2s} .
- We show, by induction, that we can reconstruct all even moments.
- We already know that we can reconstruct M_2 .
- Let us assume that we already know how to reconstruct the moments M_2, \ldots, M_{2s} .
- To reconstruct $M_{2s+2} = E[(\Delta x)^{2s+2}]$, let us use

$$M'_{2s+2} = E[(\Delta x_1 - \Delta x_2)^{2s+2}].$$

How Accuracies Are . . . What If We Do Not ... What is Known: Case . . What If Distributions . . . Idea: Let Us Use . . . Case When Have... When the Probability . . . Case of Different . . . Home Page Title Page **>>** Page 13 of 16 Go Back Full Screen Close Quit

Case of Symmetric Distribution (cont-d)

• Here,

$$(\Delta x_1 - \Delta x_2)^{2s+2} = (\Delta x_1)^{2s+2} - (2s+2) \cdot (\Delta x_1)^{2s+1} \cdot \Delta x_2 + \dots$$

• So,

$$M'_{2s+2} = M_{2s+2} + \frac{(2s+2) \cdot (2s+1)}{1 \cdot 2} \cdot M_{2s} \cdot M_2 - \dots + M_{s+2}.$$

• Thus,

$$M_{2s+2} = \frac{M'_{2s+2}}{2} - \frac{1}{2} \cdot \frac{(2s+2) \cdot (2s+1)}{1 \cdot 2} \cdot M_{2s} \cdot M_2 - \dots$$

- We know the value M'_{2s+2} , and we assumed that we already know M_2, \ldots, M_{2s} .
- Thus, we can uniquely determine M_{2s+2} .
- Induction proves that we can indeed determine all the even moments.

Need to Determine . . . How Accuracies Are . . .

What If We Do Not...

What is Known: Case . .

What If Distributions . . .

Idea: Let Us Use . . .

Case When Have . . .

When the Probability . . . Case of Different . . .

Home Page

Title Page

>>

Page 14 of 16

Go Back

Full Screen

Close

Quit

14. Case of Different Measuring Instruments

- We observe the moments $M'_{k,i,j} = E[(\Delta x_i \Delta x_j)^k].$
- We want to find the moments $M_{k,i} = E[(\Delta x_i)^k]$.
- We already know that in general, the reconstruction is not possible.
- Let us show, by induction, that reconstruction is possible if one of the distributions i = 1 is symmetric.
- For k=2, we have $M'_{2,i,j}=M_{2,i}+M_{2,j}$, so we can find $M_{2,i}$; e.g., $M_{2,1}=\frac{M'_{2,1,2}+M'_{2,1,3}-M'_{2,2,3}}{2}$
- Similar formulas help reconstruct even moments.
- $M'_{2s+1,i,1} = M_{2s+1,i} + \frac{(2s+1)\cdot 2s}{1\cdot 2} \cdot M_{2s-1,i} \cdot M_{2,1} + \dots$, so $M_{2s+1,i} = M'_{2s+1,i,1} \frac{(2s+1)\cdot 2s}{1\cdot 2} \cdot M_{2s,i} \cdot M_{2,1} \dots$

Need to Determine . . . How Accuracies Are... What If We Do Not . . . What is Known: Case . . What If Distributions . . . Idea: Let Us Use . . . Case When Have . . . When the Probability . . . Case of Different . . . Home Page Title Page **>>** Page 15 of 16 Go Back Full Screen

Close

Quit

15. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence), and
- DUE-0926721.

