How Neural Networks (NN) Can (Hopefully) Learn Faster by Taking Into Account Known Constraints

Chitta Baral¹, Martine Ceberio², and Vladik Kreinovich²

¹Department of Computer Science, Arizona State University Tempe, AZ 85287-5406, USA, chitta@asu.edu ²Department of Computer Science, University of Texas at El Paso El Paso, TX 79968, USA, mceberio@utep.edu, vladik@utep.edu

Need for Machine . . . Neural Networks . . . How to Speed Up... Neural Networks: A Biological Neuron: A... Artificial Neural . . . Resulting Algorithm How to Pre-Train a . . . How to Retain . . . Home Page **>>** Page 1 of 17 Go Back Full Screen Close Quit

1. Need for Machine Learning

- In many practical situations:
 - we know that the quantities y_1, \ldots, y_L depend on the quantities x_1, \ldots, x_n , but
 - we do not know the exact formula for this dependence.
- To get this formula, we:
 - measure the values of all these quantities in different situations m = 1, ..., M, and then
 - use the corresponding measurement results $x_i^{(m)}$ and $y_{\ell}^{(m)}$ to find the corresponding dependence.
- Algorithms that "learn" the dependence from the measurement results are known as *machine learning* alg.

2. Neural Networks (NN): Successes and Limitations

- One of the most widely used machine learning techniques is the technique of neural networks (NN).
- It is is based on a (simplified) simulation of how actual neurons works in the human brain.
- Multi-layer ("deep") neural networks are, at present, the most efficient machine learning techniques.
- One of the main limitations of neural networks is that their learning very slow.
- The current neural networks always start "from scratch", from zero knowledge.
- This inability to take prior knowledge into account drastically slows down the learning process.

3. How to Speed Up Artificial Neural Networks: A Natural Idea.

- A natural idea is to enable neural networks to take prior knowledge into account. In other words:
 - instead of learning all the data "from scratch",
 - we should first learn the constraints.

• Then:

- when it is time to use the data,
- we should be able to use these constraints to "guide" the neural network in the right direction.
- In this paper, we show how to implement this idea.

4. Neural Networks: A Brief Reminder

- In a biological neural network, a signal is represented by a sequence of spikes.
- All these spikes are largely the same, what is different is how frequently the spikes come.
- Several sensor cells generate such sequences: e.g.,
 - there are cells that translate the optical signal into spikes,
 - there are cells that translate the acoustic signal into spikes.
- For all such cells, the more intense the original physical signal, the more spikes per unit time it generates.
- Thus, the frequency of the spikes can serve as a measure of the strength of the original signal.

Neural Networks . . . How to Speed Up... Neural Networks: A... Biological Neuron: A... Artificial Neural . . . Resulting Algorithm How to Pre-Train a . . . How to Retain . . . Home Page Title Page **>>** Page 5 of 17 Go Back Full Screen Close Quit

5. Biological Neuron: A Brief Description

- A biological neuron has several inputs and one output.
- Usually, spikes from different inputs simply get together probably after some filtering.
- Filtering means that we suppress a certain proportion of spikes.
- If we start with an input signal x_i , then, after such a filtering, we get a decreased signal $w_i \cdot x_i$.
- Once all the inputs signals are combined, we have the resulting signal $\sum_{i=1}^{n} w_i \cdot x_i$.
- A biological neuron usually has some excitation level w_0 .
- If the overall input signal is below w_0 , there is practically no output.

Neural Networks . . . How to Speed Up... Neural Networks: A . . . Biological Neuron: A... Artificial Neural . . . Resulting Algorithm How to Pre-Train a . . . How to Retain . . . Home Page Title Page **>>** Page 6 of 17 Go Back Full Screen Close Quit

6. Biological Neuron (cont-d)

- The intensity of the output signal thus depends on the difference $d \stackrel{\text{def}}{=} \sum_{i=1}^{n} w_i \cdot x_i w_0$.
- Some neurons are linear, their output is proportional to this difference.
- Other neurons are non-linear, they output is equal to $s_0(d)$ for some non-linear function $s_0(z)$.
- Empirically, it was found that the corresponding non-linear transformation is $s_0(z) = 1/(1 + \exp(-z))$.
- It should be mentioned that this is a simplified description of a biological neuron:
 - the actual neuron is a complex *dynamical* system,
 - its output depends not only on the current inputs,
 but also on the previous input values.

Neural Networks . . . How to Speed Up... Neural Networks: A . . . Biological Neuron: A... Artificial Neural . . . Resulting Algorithm How to Pre-Train a . . . How to Retain . . . Home Page Title Page **>>** Page 7 of 17 Go Back Full Screen Close Quit

7. Artificial Neural Networks and How They Learn

- For each output y_{ℓ} , we train a separate neural network.
- In the simplest (and most widely used) arrangement:
 - the neurons from the first layer produce the signals

$$y_{\ell,k} = s_0 \left(\sum_{i=1}^n w_{\ell,ki} \cdot x_i - w_{\ell,k0} \right), \quad 1 \le k \le K_{\ell},$$

- these signals go into a linear neuron in the second layer, which combines them into an output

$$y_{\ell} = \sum_{k=1}^{K} W_{\ell,k} \cdot y_k - W_{\ell,0}.$$

• This is called forward propagation.

8. How a NN Learns: Derivation of the Formulas

- Once we have an observation $(x_1^{(m)}, \ldots, x_n^{(m)}, y_\ell^{(m)})$, we first input the values $x_1^{(m)}, \ldots, x_n^{(m)}$ into the NN.
- In general, the NN's output output $y_{\ell,NN}$ is different from the observed output $y_{\ell}^{(m)}$.
- We want to modify the weights $W_{\ell,k}$ and $w_{\ell,ki}$ so as to minimize the squared difference

$$J \stackrel{\text{def}}{=} (\Delta y_{\ell})^2$$
, where $\Delta y_{\ell} \stackrel{\text{def}}{=} y_{\ell,NN} - y_{\ell}^{(m)}$.

• This minimization is done by using gradient descent:

$$W_{\ell,k} \to W_{\ell,k} - \lambda \cdot \frac{\partial J}{\partial W_{\ell,k}}, \quad w_{\ell,ki} \to w_{\ell,ki} - \lambda \cdot \frac{\partial J}{\partial w_{\ell,ki}}.$$

- ullet The resulting algorithm for updating the weights is known as backpropagation.
- This algorithm is based on the following idea.

Need for Machine...

Neural Networks...

How to Speed Up...

Neural Networks: A...

Biological Neuron: A...

Artificial Neural . . .

Resulting Algorithm

How to Pre-Train a . . .

. .

How to Retain...

Home Page

Go Back

Full Screen

Close

9. Derivation of the Formulas (cont-d)

- First, one can easily check that $\frac{\partial J}{\partial W_{\ell,0}} = -2\Delta y$, so $\Delta W_{\ell,0} = -\lambda \cdot \frac{\partial J}{\partial W_{\ell,0}} = \alpha \cdot \Delta y_{\ell}$, where $\alpha \stackrel{\text{def}}{=} 2\lambda$.
- Similarly, $\frac{\partial J}{\partial W_{\ell,k}} = 2\Delta y_{\ell} \cdot y_{\ell,k}$, so $\Delta W_{\ell,k} = -\lambda \cdot \frac{\partial J}{\partial W_{\ell,k}} = 2\lambda \cdot \Delta y_{\ell} \cdot y_{\ell,k}$, i.e., $\Delta W_{\ell,k} = -\Delta W_{\ell,0} \cdot y_{\ell,k}$.
- The only dependence of y_{ℓ} on $w_{\ell,ki}$ is via the dependence of $y_{\ell,k}$ on $w_{\ell,ki}$, so, the chain rule leads to

$$\frac{\partial J}{\partial w_{\ell,k0}} = \frac{\partial J}{\partial y_{\ell,k}} \cdot \frac{\partial y_{\ell,k}}{\partial w_{\ell,k0}} \text{ and }$$

$$\frac{\partial J}{\partial w_{\ell,k0}} = 2\Delta y_{\ell} \cdot W_{\ell,k} \cdot s_0' \left(\sum_{i=1}^n w_{\ell,ki} \cdot x_i - w_{\ell,k0} \right) \cdot (-1).$$

Need for Machine . . . Neural Networks . . . How to Speed Up... Neural Networks: A... Biological Neuron: A... Artificial Neural . . . Resulting Algorithm How to Pre-Train a . . . How to Retain... Home Page Title Page **>>** Page 10 of 17 Go Back Full Screen Close

Derivation of the Formulas (final)

• For
$$s_0(z) = 1/(1 + \exp(-z))$$
, we have

$$s'_0(z) = \exp(-z)/(1 + \exp(-z))^2$$
, i.e.,
- $\exp(-z)$ 1

$$s'_0(z) = \frac{\exp(-z)}{1 + \exp(-z)} \cdot \frac{1}{1 + \exp(-z)} = s_0(z) \cdot (1 - s_0(z)).$$
• Thus, for $s_0(z) = y_{\ell,k}$, we get $s'_0(z) = y_{\ell,k} \cdot (1 - y_{\ell,k})$,

$$\frac{\partial J}{\partial w_{\ell,k0}} = -2\Delta y_{\ell} \cdot W_{\ell,k} \cdot y_{\ell,k} \cdot (1 - y_{\ell,k}), \text{ and}$$

$$\Delta w_{\ell,k0} = -\lambda \cdot \frac{\partial J}{\partial w_{\ell,k0}} = \lambda \cdot 2\Delta y_{\ell} \cdot W_{\ell,k} \cdot y_{\ell,k} \cdot (1 - y_{\ell,k}).$$

- So, we have $\Delta w_{\ell,k0} = -\Delta W_{\ell,k} \cdot W_{\ell,k} \cdot (1-y_{\ell,k})$.
- For $w_{\ell,ki}$, we have

$$\frac{\partial J}{\partial w_{\ell,ki}} = 2\Delta y_{\ell} \cdot W_{\ell,k} \cdot y_{\ell,k} \cdot (1 - y_{\ell,k}) \cdot x_i = -\frac{\partial J}{\partial w_{\ell,k0}} \cdot x_i,$$

• Hence $\Delta w_{\ell,ki} = -x_i \cdot \Delta w_{\ell,k0}$.

Neural Networks . . .

Need for Machine . . .

How to Speed Up...

Neural Networks: A...

Biological Neuron: A...

Artificial Neural . . .

Resulting Algorithm

How to Pre-Train a . . .

How to Retain . . .

Home Page

Title Page

Page 11 of 17

>>

Go Back

Full Screen

Quit

Close

- We pick some value α , and cycle through observations (x_1, \ldots, x_n) with the desired outputs y_{ℓ} .
- For each observation, we first apply the forward propagation to compute the network's prediction $y_{\ell,NN}$.
- Then we compute:

$$\bullet \ \Delta y_{\ell} = y_{\ell,NN} - y_{\ell},$$

$$\bullet \ \Delta W_{\ell,0} = \alpha \cdot \Delta y_{\ell},$$

$$\bullet \ \Delta W_{\ell,k} = -\Delta W_{\ell,0} \cdot y_{\ell,k},$$

•
$$\Delta w_{\ell,k0} = -\Delta W_{\ell,k} \cdot W_{\ell,k} \cdot (1 - y_{\ell,k})$$
, and

$$\bullet \ \Delta w_{\ell,ki} = -\Delta w_{\ell,k0} \cdot x_i.$$

- We update each weight w to $w_{\text{new}} = w + \Delta w$.
- We repeat this procedure until the process converges.

Need for Machine...

Neural Networks...

How to Speed Up...

Neural Networks: A...

Biological Neuron: A...

Artificial Neural . . .

Resulting Algorithm

How to Pre-Train a . . .

How to Retain...

Home Page

Title Page

←

←

Page 12 of 17

Go Back

Full Screen

Close

$$f_c(x_1, \dots, x_n, y_1, \dots, y_L) = 0, \quad 1 \le c \le C.$$

- To satisfy the constraints means to minimize the distance from (f_1, \ldots, f_C) to the ideal point $(0, \ldots, 0)$.
- So, we minimize the sum

$$F \stackrel{\text{def}}{=} \sum_{c=1}^{C} (f_c(x_1, \dots, x_n, y_1, \dots, y_L))^2.$$

• To minimize this sum, we can use a similar gradient descent idea.

13. How to Pre-Train a NN (cont-d)

• From the mathematical viewpoint, the only difference from the usual backpropagation is the first step: here,

$$\frac{\partial F}{\partial W_{\ell,0}} = 2 \cdot \sum_{c=1}^{C} f_c \cdot \frac{\partial f_c}{\partial y_{\ell}}, \text{ hence } \Delta W_{\ell,0} = -\alpha \cdot \sum_{c=1}^{C} f_c \cdot \frac{\partial f_c}{\partial y_{\ell}}:$$

- once we have computed $\Delta W_{\ell,0}$,
- all the other changes $\Delta W_{\ell,k}$ and $\Delta w_{\ell,ki}$ are computed based on the same formulas as above.
- The consequence of this algorithm modification is that:
 - instead of L independent neural networks used to train each of the L outputs y_{ℓ} ,
 - now we have L dependent ones.
- Indeed, to start a new cycle for each ℓ , we need to know the values y_1, \ldots, y_L corresponding to *all* the outputs.

Need for Machine . . . Neural Networks . . . How to Speed Up... Neural Networks: A... Biological Neuron: A... Artificial Neural . . . Resulting Algorithm How to Pre-Train a . . . How to Retain . . . Home Page Title Page **>>** Page 14 of 17 Go Back Full Screen Close Quit

14. How to Retain Constraints When Training Neural Networks on Real Data

- Once the networks is pre-trained so that the constraints are all satisfied, we need to train it on the real data.
- In this real-data training, we need to make sure that:
 - not only all the given data points fit, but that
 - also all C constraints remain satisfied.
- In other words, on each step, we need to make sure:
 - not only that Δy_{ℓ} is close to 0, but also
 - that $f_c(x_1, \ldots, x_n, y_1, \ldots, y_L)$ is close to 0 for all ℓ .

Neural Networks . . . How to Speed Up... Neural Networks: A... Biological Neuron: A... Artificial Neural . . . Resulting Algorithm How to Pre-Train a . . . How to Retain . . . Home Page Title Page **>>** Page 15 of 17 Go Back Full Screen Close Quit

15. How to Retain Constraints When Training Neural Networks on Real Data (cont-d)

- So, similar to the previous section:
 - instead of minimizing $J = (\Delta y_{\ell})^2$,
 - we should minimize a combined objective function $G \stackrel{\text{def}}{=} J + N \cdot F$, where N is a constant, and

$$F = \sum_{c=1}^{C} f_c^2.$$

• Similarly to pre-training, the only difference from backpropagation is that we compute $\Delta W_{\ell,0}$ differently:

$$\Delta W_{\ell,0} = \alpha \cdot \left(\Delta y_{\ell} - N \cdot \sum_{c=1}^{C} f_c \cdot \frac{\partial f_c}{\partial y_{\ell}} \right).$$

16. Acknowledgments

This work was supported in part:

- by NSF grants HRD-0734825, HRD-1242122, and DUE-0926721, and
- by an award from Prudential Foundation.

Need for Machine . . . Neural Networks . . . How to Speed Up... Neural Networks: A . . . Biological Neuron: A... Artificial Neural . . . Resulting Algorithm How to Pre-Train a . . . How to Retain . . . Home Page Title Page 44 Page 17 of 17 Go Back Full Screen Close