Derivation of Louisville-Bratu-Gelfand Equation from Shift- or Scale-Invariance

Leobardo Valera, Martine Ceberio, and Vladik Kreinovich

Department of Computer Science, University of Texas at El Paso El Paso, Texas 79968, USA leobardovalera@gmail.com, mceberio@utep.edu, vladik@utep.edu In Many Different . . . Laplace Equation General Case of Linear . . Additional Conditions Scale-Invariance: . . . Shift-Invariance: . . . From Laplace . . . How to Describe Non-Which Function $f(\varphi)$... Home Page **>>** Page 1 of 32 Go Back Full Screen Close Quit

1. In Many Different Situations, We Have the Exact Same Louisville-Bratu-Gelfand Equation

• In many different physical situations, we encounter the same differential equation

$$\nabla^2 \varphi = c \cdot \exp(a \cdot \varphi).$$

- This equation known as Louisville-Bratu-Gelfand equation appears:
 - in the analysis of explosions,
 - in the study of combustion,
 - in astrophysics (to describe the matter distribution in a nebula),
 - in electrodynamics to describe the electric space charge around a glowing wire - and
 - in many other applications areas.

Laplace Equation General Case of Linear . . Additional Conditions... Scale-Invariance: . . . Shift-Invariance: . . . From Laplace . . . How to Describe Non-.. Which Function $f(\varphi)$... Home Page Title Page **>>** Page 2 of 32 Go Back Full Screen Close Quit

2. Challenge

- The same equation appears in many different situations.
- This seems to indicate that this equation should not depend on any specific physical process.
- It should be possible to derive it from general principles.
- In this paper, we show that this equation can be naturally derived from basic symmetry requirements.

3. Laplace Equation

- The simplest form of our equation is when c = 0.
- In this case, we get a linear equation $\nabla^2 \varphi = 0$.
- This equation is known as the Laplace equation; so:
 - in order to understand where our equation comes from,
 - let us first recall where the Laplace equation comes from.

4. Scalar Fields Are Ubiquitous

- To describe the state of the world, we need to describe the values of all physical quantities at all locations.
- In physics, the dependence $\varphi(x)$ of a physical quantity φ on the location x is known as a *field*.
- Typical examples are components of an electric or magnetic fields, gravity field, etc.
- In general, at each location x, there are many different physical fields.
- In some cases, several fields are strong enough to affect the situation.
- So, we need to take several fields into account.
- However, in many practical situations, only one field is strong enough.

5. Scalar Fields Are Ubiquitous (cont-d)

- For example:
 - when we analyze the motion of celestial bodies,
 - we can safely ignore all the fields except for gravity.
- Similarly, if we analyze electric circuits, we can safely ignore all the fields but the electromagnetic field.

6. Case of Weak Fields

- In general, equations describing fields are non-linear.
- However, in many real-life situations, fields are weak.
- In this case, we can safely ignore quadratic and higher order terms in terms of φ and consider linear equations.

7. General Case of Linear Equations

- In physics, usually, we consider second order differential equations, i.e., equations that depend:
 - on the field φ ,
 - on its first order partial derivatives $\varphi_{,i} \stackrel{\text{def}}{=} \frac{\partial \varphi}{\partial x_i}$ and
 - on its second order derivatives $\varphi_{,ij} \stackrel{\text{def}}{=} \frac{\partial^2 \varphi}{\partial x_i \partial x_i}$.
- The general linear equation containing these terms has the form

$$\sum_{i=1}^{3} \sum_{j=1}^{3} a_{ij} \cdot \varphi_{,ij} + \sum_{i=1}^{3} a_{i} \cdot \varphi_{,i} + a \cdot \varphi = 0.$$

8. Rotation-Invariance

- In general, physics does not change if we simply rotate the coordinate system.
- Thus, it is reasonable to require that the system be invariant with respect to arbitrary rotations.
- This requirement eliminates the terms proportional to the first derivatives $\varphi_{,i}$.
- Otherwise, we have a selected vector a_i and thus, an expression which is not rotation-invariant.
- Similarly, we cannot have different eigenvector of the matrix a_{ij} this would violate rotation-invariance.
- Thus, this matrix must be proportional to the unit matrix with components $\delta_{ij} = 1$ if i = j else 0.

9. Rotation-Invariance (cont-d)

- So, $a_{ij} = a_0 \cdot \delta_{ij}$ for some a_0 , and the above equation takes the form $a_0 \cdot \sum_{i=1}^{3} \varphi_{,ii} + a \cdot \varphi = 0$.
- Dividing both sides by a_0 and taking into account that $\sum_{i=1}^{3} \varphi_{,ii} = \nabla^2 \varphi, \text{ we get the equation}$

$$\nabla^2 \varphi + m \cdot \varphi = 0$$
, where $m \stackrel{\text{def}}{=} a/a_0$.

- This equation is indeed the general physics equation for a weak scalar field.
- The case of m=0 corresponds to electromagnetic field or gravitational field.

10. Rotation-Invariance (cont-d)

- More generally, m = 0 corresponds to any field whose quanta have zero rest mass.
- Example: photons or gravitons, quanta of the above fields.
- In the general case, when the quanta have non-zero rest mass, we get a more general equation with $m \neq 0$.
- \bullet Example: strong interactions whose quanta are π -mesons.

11. Additional Conditions Are Needed to Pinpoint Laplace Equation.

- Can we explain why:
 - out of all possible equations of type,
 - Laplace equation corresponding to m = 0 is the most frequent?
- We need to use additional conditions.
- As such conditions, we will use the fundamental notions of scale- and shift-invariance.

Laplace Equation General Case of Linear . . Additional Conditions... Scale-Invariance: . . . Shift-Invariance: . . . From Laplace . . . How to Describe Non-.. Which Function $f(\varphi)$... Home Page Title Page **>>** Page 12 of 32 Go Back Full Screen Close Quit

12. Scale-Invariance: General Idea

- Equations deal with numbers.
- To describe the value of a physical quantity as a number, we need to select a measuring unit.
- If we change the original unit to a one which is λ times smaller, then:
 - the same physical quantity which was previously described by the number x
 - will now be described by a λ times larger number

$$x' = \lambda \cdot x$$
.

- For example:
 - if we replace meters with a 100 times smaller unit
 - centimeter,
 - all the length values are multiplied by 100: 1.7 meters becomes $1.7 \cdot 100 = 170$ centimeters.

Laplace Equation General Case of Linear . . Additional Conditions... Scale-Invariance: . . . Shift-Invariance: . . . From Laplace . . . How to Describe Non-.. Which Function $f(\varphi)$... Home Page Title Page **>>** Page 13 of 32 Go Back Full Screen Close Quit

13. Scale-Invariance (cont-d)

- The choice of a measuring unit is rather arbitrary.
- It is therefore reasonable to require that the fundamental physical equations should not change
 - if we simply change a measuring unit.
 - i.e., if we replace x with $x' = \lambda \cdot x$.
- Of course, different quantities may be related.
- So, if we change the unit of one quantity, we may need to appropriate change units for related quantities.
- For example, if we change the unit of time t, e.g., for hours to seconds, then:
 - to preserve the relation $d = v \cdot t$ between the velocity v and the distance d,
 - we need to also change the unit for measuring velocity e.g., from km/hour to km/sec.

14. Two Quantities

- Our equation involves two physical quantities: the physical field φ and the coordinate (distance) x_i .
- Thus, we can consider scale-invariance with respect to both these quantities.
- The equation is linear in φ .
- So, it does not change if we replace the original field $\varphi(x)$ with a φ -re-scaled field $\varphi'(x) = \lambda \cdot \varphi(x)$.
- If we change the unit of measuring x_i to a unit which is λ times smaller, then the numerical values will change:

$$x_i \to \lambda \cdot x_i$$
.

- Thus, each derivative $\frac{\partial}{\partial x_i}$ gets divided by λ , and so, the second derivative is divided by λ^2 .
- The term $m \cdot \varphi$ remains unchanged.

Laplace Equation General Case of Linear . . Additional Conditions . . Scale-Invariance: . . . Shift-Invariance: . . . From Laplace . . . How to Describe Non-.. Which Function $f(\varphi)$... Home Page Title Page Page 15 of 32 Go Back Full Screen Close Quit

15. Two Quantities (cont-d)

• As a result, the above equation changes into

$$\frac{1}{\lambda^2} \cdot \nabla^2 \varphi + m \cdot \varphi = 0.$$

- This is equivalent to $\nabla^2 \varphi + m \cdot \lambda^2 \cdot \varphi = 0$.
- The only case when this equation is equivalent to the original one is when the coefficients at φ are equal:

$$m = m \cdot \lambda^2$$
 thus $m = 0$.

• In other words, the only x-scale-invariant case of the general linear equation is the Laplace equation.

16. Shift-Invariance: General Idea

- For many physical quantities, the numerical value also depends on the selection of the starting point.
- Examples: time, coordinate.
- If we change the starting point of measuring time to a new one which is s moments before, then:
 - instead of the original measurement results t,
 - we will get new shifted numerical values t' = t + s.
- The selection of a starting point is simply a matter of convenience, there is nothing fundamental about it.
- It is therefore reasonable to require that:
 - the fundamental physical equations do not change
 - if we simply change the starting point.

Laplace Equation General Case of Linear . . Additional Conditions Scale-Invariance: . . . Shift-Invariance: . . . From Laplace . . . How to Describe Non-.. Which Function $f(\varphi)$... Home Page Title Page **>>** Page 17 of 32 Go Back Full Screen Close Quit

17. Shift-Invariance (cont-d)

- Of course:
 - to preserve the equations,
 - we may need to accordingly change measuring unit or a starting point) for some other quantities.
- Let us see what we can conclude in our case by requiring shift-invariance for x_i and for φ .

18. x- and φ -Shift-Invariance

- Let us replace the original variables x_i with new variables $x'_i = x_i + s_i$, where s_i is the shift.
- Then the derivatives do not change and thus, the equation remains the same.
- Let us now consider the consequences of requiring that the equation are invariant with respect to shifting φ :

$$\varphi'(x) = \varphi(x) + s.$$

- In many cases, such a shift makes perfect physical sense.
- Indeed, e.g.:
 - the only way we measure electric potential $\varphi(x)$
 - is by measuring the difference $\varphi(x) \varphi(x')$ between potentials at different locations.

Laplace Equation General Case of Linear . . Additional Conditions... Scale-Invariance: . . . Shift-Invariance: . . . From Laplace . . . How to Describe Non-.. Which Function $f(\varphi)$... Home Page Title Page **>>** Page 19 of 32 Go Back Full Screen Close Quit

19. x- and φ -Shift-Invariance (cont-d)

- \bullet If we add the same value s to all the values of the field:
 - then the differences remain the same,
 - thus, measurement results.
- What happens if we apply this shift to our equation?
- The derivatives do not change (since the derivative of a constant s is 0).
- The term $m \cdot \varphi$ changes into $m \cdot (\varphi + s)$.
- Thus, instead of the original equation, we get a new equation $\nabla^2 \varphi + m \cdot \varphi + m \cdot s = 0$.
- The resulting equation is equivalent to the original when $m \cdot s = 0$, i.e., when

$$m=0.$$

ullet In other words, the only φ -shift-invariant case of the general linear equation is the Laplace equation.

Laplace Equation General Case of Linear . . Additional Conditions . . . Scale-Invariance: . . . Shift-Invariance: . . . From Laplace . . . How to Describe Non-... Which Function $f(\varphi)$... Home Page Title Page **>>** Page 21 of 32 Go Back Full Screen Close Quit

20. Summary

- To get Laplace equation $\nabla^2 \varphi = 0$ out of the general linear equation, we need to postulate:
 - either x-scale-invariance
 - or φ -shift-invariance.

21. From Laplace Equation to Poisson Equation

- The Laplace equation $\nabla^2 \varphi = 0$ describes what happens in the absence of any external sources.
- If there is an external source, then the expression $\nabla^2 \varphi$ is, in general, not necessarily equal to 0.
- In other words, we have an equation $\nabla^2 \varphi = f$ for some external function f.
- This equation is known as the Poisson equation.

22. How to Describe Non-Linearity

- Non-linearity also means that the original linear equation is no longer exactly true.
- There are additional nonlinear terms in this equation.
- We can view these non-linear terms as a source for the field.
- So, in effect, we have the Poisson equation.
- ullet The only difference is that now, the source term f is not an external term.
- It is a nonlinear function of the field itself:

$$\nabla^2 \varphi = f(\varphi).$$

• The question is: which function $f(\varphi)$ should we choose?

23. Which Function $f(\varphi)$ Should We Choose? Let Us Use Symmetries

- Let us use the same natural symmetries that we used to derive the Laplace equation in the first place:
 - φ -shift-invariance and
 - x-scale-invariance.
- When is the resulting equation φ -shift-invariant?
- If we replace the original values of the field $\varphi(x)$ with the shifted values $\varphi'(x) = \varphi(x) + s$, then:
 - the derivatives will not change,
 - so our equation will take the form $\nabla^2 \varphi = f(\varphi + s)$.
- Literally speaking, these two equations coincide if for all φ and s, we have $f(\varphi + s) = f(\varphi)$.
- In this case, as we can easily see, the function f is simply a constant so there is no nonlinearity.

Laplace Equation General Case of Linear . . Additional Conditions... Scale-Invariance: . . . Shift-Invariance: . . . From Laplace . . . How to Describe Non-.. Which Function $f(\varphi)$... Home Page Title Page **>>** Page 25 of 32 Go Back Full Screen Close Quit

24. Which $f(\varphi)$ Should We Choose (cont-d)

- Sometimes, to preserve the equation, we need to accordingly make changes with other variables as well.
- In our case, this means that:
 - in addition to a shift $\varphi \to \varphi + s$,
 - we may also need to apply an appropriate re-scaling of the coordinates x_i : $x_i \to \lambda(s) \cdot x_i$.
- Under this re-scaling, the second derivatives are divided by λ^2 .
- So, we get a more complicated equation

$$\frac{1}{\lambda^2(s)} \cdot \nabla^2 \varphi = f(\varphi + s).$$

- This is equivalent to $\nabla^2 \varphi = \lambda^2(s) \cdot f(\varphi + s)$.
- For the new equation to be equivalent to the original equation, their right-hand sides must coincide.

Laplace Equation General Case of Linear . . Additional Conditions... Scale-Invariance: . . . Shift-Invariance: . . . From Laplace . . . How to Describe Non-.. Which Function $f(\varphi)$... Home Page Title Page **>>** Page 26 of 32 Go Back Full Screen Close Quit

25. Which $f(\varphi)$ Should We Choose (cont-d)

• So, for all φ and s, we have $\lambda^2(s) \cdot f(\varphi + s) = f(\varphi)$, or, equivalently,

$$f(\varphi + s) = C(s) \cdot f(\varphi)$$
, where $C(s) \stackrel{\text{def}}{=} \frac{1}{\lambda^2(s)}$.

- In physics, all dependencies are measurable, so the function $f(\varphi)$ is measurable.
- Thus, the function $C(s) = f(\varphi + s)/f(\varphi)$ is also measurable, as the ratio of two measurable functions.
- It is known that for measurable functions, the only solutions to the above functional equation are functions

$$f(\varphi) = c \cdot \exp(a \cdot \varphi).$$

• This is exactly Louisville-Bratu-Gelfand equation that we are trying to explain!

In Many Different...

Laplace Equation

General Case of Linear . .

Additional Conditions...

Scale-Invariance: . . .
Shift-Invariance: . . .

From Laplace...

How to Describe Non-..

Which Function $f(\varphi)$...

Home Page

Title Page

>>

Page 27 of 32

Go Back

Full Screen

Close

Quit

26. What If We Require *x*-Scale-Invariance?

- If we replace the original values of the coordinates x_i with the re-scaled values $x_i' = \lambda \cdot x_i$, then:
 - the derivatives will divide by λ^2 , while
 - the term $f(\varphi)$ will not change.
- So, our equation will take the form

$$\frac{1}{\lambda^2} \cdot \nabla^2 \varphi = f(\varphi).$$

- This is equivalent to $\nabla^2 \varphi = \lambda^2 \cdot f(\varphi)$.
- Literally speaking, these two equations coincide if $f(\varphi) = \lambda^2 \cdot f(\varphi)$ for all φ and λ .
- In this case, as we can easily see, the function f is simply 0 so there is no nonlinearity.
- Sometimes, to preserve the equation, we need to accordingly make changes with other variables as well.

Laplace Equation General Case of Linear . . Additional Conditions... Scale-Invariance: . . . Shift-Invariance: . . . From Laplace . . . How to Describe Non-.. Which Function $f(\varphi)$... Home Page Title Page **>>** Page 28 of 32 Go Back Full Screen Close Quit

27. x-Scale-Invariance (cont-d)

• In our case, this means that we may also need to apply an appropriate shift $s(\lambda)$ of the φ -field:

$$\varphi(x) \to \varphi(x) + s(\lambda).$$

- Under this shift, the derivatives do not change, but the value $f(\varphi)$ is replaced by the value $f(\varphi + s(\lambda))$.
- So, we get a more complicated equation

$$\frac{1}{\lambda^2} \cdot \nabla^2 \varphi = f(\varphi + s(\lambda)).$$

- This is equivalent to $\nabla^2 \varphi = \lambda^2 \cdot f(\varphi + s(\lambda))$.
- For the new equation to be equivalent to the original equation, their right-hand sides must coincide.

Laplace Equation General Case of Linear . . Additional Conditions... Scale-Invariance: . . . Shift-Invariance: . . . From Laplace . . . How to Describe Non-.. Which Function $f(\varphi)$... Home Page Title Page **>>** Page 29 of 32 Go Back Full Screen Close Quit

28. x-Scale-Invariance (cont-d)

• So, for all φ and λ , we have

$$\lambda^2 \cdot f(\varphi + s(\lambda)) = f(\varphi).$$

• This is equivalent to

$$f(\varphi + s(\lambda)) = \lambda^{-2} \cdot f(\varphi).$$

• For this equation, we also get $f(\varphi) = c \cdot \exp(a \cdot \varphi)$, i.e., we also get the Louisville-Bratu-Gelfand equation.

29. General Conclusion

- The simplest case of the Louisville-Bratu-Gelfand equation is the Laplace equation $\nabla^2 \varphi = 0$.
- To derive this equation from the general linear equation, we need to require:
 - either φ -shift-invariance
 - or x-scale-invariance.
- It turns out that in the nonlinear case:
 - each of these two invariance requirements
 - uniquely determines the Louisville-Bratu-Gelfand equation.
- So, this equation can be derived from natural symmetries.
- This explains why this same equation emerges in the description of many different physical phenomena.

30. Acknowledgement

This work was supported in part by the US National Science Foundation grant HRD-1242122 (Cyber-ShARE).

