Optimal Search under Constraints

Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

University of Texas at El Paso El Paso, TX 79968, USA mceberio@utep.edu, olgak@utep.edu vladik@utep.edu Need to Select . . . How the First Doctor.. The Second Doctor . . . Why the Difference? Natural General Question Towards Formulating . . Precise Formulation of . . Optimal Algorithm Proof Home Page **>>** Page 1 of 27 Go Back Full Screen Close Quit

1. Need to Select Optimal Dose of a Medicine

- This research started with a simple observation about how medical doctors decide on the dosage.
- For many chronic health conditions like high cholesterol, high blood pressure, etc.:
 - there are medicines
 - that bring the corresponding numbers back to normal.
- An important question is how to select the correct dosage.
- On the one hand, if the dosage is too small, the medicine will not have the full desired effect.

2. Need to Select Optimal Dose (cont-d)

- On the other hand, we do not want the dosage to be higher than needed:
 - every medicine has negative side effects, side effects that increase with the increase in dosage, and
 - we want to keep these side effects as small as possible.
- In most such cases, there are general recommendations that:
 - provide a range of possible doses
 - depending on the patient's age, weight, etc.
- However, a specific dosage within this range:
 - has to be selected individually,
 - based on how this patient's organism reacts to this medicine.

3. How the First Doctor Selected the Dose

- It so happened that two people having similar conditions ended up with the same daily dosage of 137 units.
- However interestingly, their doctors followed a different path to this value.
- For the first patient, the doctor seems to have followed the usual bisection algorithm.
- This doctor started with the dose of 200 and it worked.
- So, the doctor tried 100 it did not work.
- The doctor tried 150 it worked.
- The doctor tried 125 it did not work.
- So, the doctor tried 137 and it worked.

- The doctor could have probably continued further, but:
 - the pharmacy already had trouble with maintaining the exact dose of 137,
 - so this became the final arrangement.
- This procedure indeed follows the usual bisection (= binary search) algorithm.
- This algorithm is usually described as a way:
 - to solve the equation f(x) = 0
 - when we have an interval [a, b] for which

$$f(a) < 0 < f(b).$$

- In our problem, f(a) is the difference between the effect of the dose a and the desired effect:
 - if the dose is not sufficient, this difference is negative, and
 - if the dose is sufficient, this difference is non-negative (positive or 0).
- In the bisection algorithm, at each iteration, we have a range $[\underline{x}, \overline{x}]$ for which $f(\underline{x}) < 0$ and $f(\overline{x}) > 0$.
- In the beginning, we have $[\underline{x}, \overline{x}] = [a, b]$.
- At each iteration, we take a midpoint $m = \frac{\underline{x} + \overline{x}}{2}$ and compute f(m).

- Depending on the sign of f(m), we make the following changes:
 - if f(m) < 0, we replace \underline{x} with m and thus, get a new interval $[m, \overline{x}]$;
 - if f(m) > 0, we replace \overline{x} with m and thus, get a new interval $[\underline{x}, m]$.
- In both cases, we decrease the width of the interval $[\underline{x}, \overline{x}]$ by half.
- We stop when this width becomes smaller than some given value $\varepsilon > 0$.
- The value ε represents the accuracy with which we want to find the solution.
- In the above example, based on the 1st experiment, we know that the ideal dose is in the interval [0, 200].

How the First Doctor . . The Second Doctor . . . Why the Difference? Natural General Question Towards Formulating . . . Precise Formulation of . . Optimal Algorithm Proof Home Page Title Page **>>** Page 7 of 27 Go Back Full Screen Close Quit

Need to Select . . .

- So, we try m = 100 and:
 - after finding that f(m) < 0 (i.e., that the dose m = 100 is not sufficient),
 - we come up with the narrower interval [100, 200].
- Then, we try the new midpoint m = 150, and:
 - based on the testing result,
 - we come up with the narrower interval [100, 150].
- Then, we try the new midpoint m = 125, and:
 - based on the testing result,
 - we come up with the narrower interval [125, 150].
- In the last step, we try the new midpoint m = 137.

- Strictly speaking, it should be 137.5.
- However, as we have mentioned, the pharmacy cannot provide such an accuracy.
- Now we know that the desired value is within the narrower interval [125, 137].
- Out of all possible values from the interval [125, 137]:
 - the only value about which we know that this value is sufficient
 - is the value 137.
- So this value has been prescribed to the first patient.

9. The Second Doctor Selected the Same Dose Differently

- Interestingly, for the second patient, the process was completely different.
- The doctor started with 25 units.
- Then since this dose was not sufficient the dose was increased to 50 units.
- Then the dose was increased to 75, 100, 125 units, and, finally, to 150 units.
- The 150 units dose turned out to be sufficient.
- So the doctor knew that the optimal dose is between 125 and 150.
- Thus, this doctor tried 137, and it worked.

How the First Doctor.. The Second Doctor . . . Why the Difference? Natural General Question Towards Formulating . . . Precise Formulation of . . Optimal Algorithm Proof Home Page Title Page **>>** Page 10 of 27 Go Back Full Screen Close Quit

Need to Select . . .

10. The Second Doctor Selected the Same Dose Differently (cont-d)

- Interestingly:
 - in contrast to the first doctor,
 - this doctor could not convince the pharmacy to produce a 137 units dose.
- So this doctor's prescription of this dose consists of taking 125 units and 150 units in turn.

11. Why the Difference?

- Why did the two doctors use different procedures?
- Clearly, the second doctor needed more steps and longer time to come up with the same optimal dose:
 - this doctor used 7 steps:

- instead of only 5 steps used by the first doctor:

- Why did this doctor not use a faster bisection procedure?
- At first glance, it may seem that the second doctor was not familiar with bisection.

Need to Select . . . How the First Doctor . . The Second Doctor . . . Why the Difference? Natural General Question Towards Formulating . . . Precise Formulation of . . Optimal Algorithm Proof Home Page Title Page **>>** Page 12 of 27 Go Back Full Screen Close Quit

12. Why the Difference (cont-d)

- However, clearly this doctor was familiar with it; e.g.:
 - after realizing that the optimal dose is within the interval [125, 150],
 - he/she checked the midpoint dose of 137.
- The real explanation of:
 - why the second doctor did not use the faster procedure
 - is that the second doctor was more cautious about possible side effects.
- Probably, in this doctor's opinion, the second patient was vulnerable to possible side effects.

13. Why the Difference (cont-d)

- Thus, this doctor decided:
 - not to increase the dose too much beyond the optimal value,
 - so as to minimize possible side effects.
- On the other hand, the first doctor:
 - based on the overall health of the first patient,
 - was less worried about possible side effects.

14. Natural General Question

- A natural next question is:
 - under such restriction on possible tested values x,
 - what is the optimal way to find the desired solution,
 - i.e., to be more precise, the desired ε -approximation to the solution?
- It is known that:
 - if we do not have any constraints,
 - then bisection is the optimal way to find the solution to the equation f(x) = 0.
- So, the question is how to optimally modify bisection under such constraints?

15. Towards Formulating the Problem in Precise Terms

- The larger the dose of the medicine, the larger the effect.
- There is a certain threshold x_0 after which the medicine has the full desired curing effect.
- Every time we test a certain does x of the medicine of a patient:
 - we either get the full desired effect, which would mean that $x_0 \leq x$,
 - or we do not yet get the full desired effect, which means that $x < x_0$.
- We want to find the curing dose as soon as possible, i.e., after as few tests as possible.

16. Towards Precise Formulation (cont-d)

- If the only objective was to cure the disease, then we could use any dose larger than or equal to x_0 .
- However, the larger the dose, the larger the undesired side effects.
- So, we would like to prescribe a value which is as close to x_0 as possible.
- Of course, in real life, we can only maintain the dose with some accuracy $\varepsilon > 0$.
- So, we want to prescribe a value x_r which is ε -close to x_0 , i.e., for which $x_0 \leq x_r \leq x_0 + \varepsilon$.

How the First Doctor . . The Second Doctor . . . Why the Difference? Natural General Question Towards Formulating . . . Precise Formulation of . . Optimal Algorithm Proof Home Page Title Page **>>** Page 17 of 27 Go Back Full Screen Close Quit

Need to Select . . .

17. Towards Precise Formulation (cont-d)

- The only way to find the optimal dose x_r is to test different doses on a given patient.
- If, during this testing, we assign too large a dose, we may seriously harm the patient.
- So, it is desirable not to exceed x_0 too much when testing.
- ullet Let us denote the largest allowed excess by δ .
- This means that we can only test values $x \leq x_0 + \delta$.
- Now, we can formulate the problem in precise terms.

How the First Doctor . . The Second Doctor . . . Why the Difference? Natural General Question Towards Formulating . . . Precise Formulation of . . Optimal Algorithm Proof Home Page Title Page **>>** Page 18 of 27 Go Back Full Screen Close Quit

Need to Select . . .

18. Precise Formulation of the Problem

- By search under constraints, we mean the following problem:
- Given: rational numbers $\varepsilon > 0$ and $\delta > 0$, and an algorithm c that, for some fixed (unknown) $x_0 > 0$,
 - given a rational number $x \in [0, x_0 + \delta]$,
 - checks whether $x < x_0$ or $x \ge x_0$.
- This algorithm will be called a *checking* algorithm.
- Find: a real number x_r for which $x_0 \le x_r \le x_0 + \varepsilon$.

19. Precise Formulation of the Problem (cont-d)

- We want to find the fastest possible algorithm for solving this problem.
- To gauge the speed of this algorithm, we will count the number of calls to the checking algorithm c.
- For every algorithm A, let us denote the number of calls to c by $N_{A,\varepsilon,\delta}(x_0)$.
- We say that the algorithm A_0 is *optimal* if every other algorithm $A: N_{A_0,\varepsilon,\delta}(x_0) \leq N_{A,\varepsilon,\delta}(x_0) + \text{const.}$

20. Optimal Algorithm

Proposition. The following algorithm A is optimal:

- First, we apply the algorithm c to values δ , 2δ , ..., until we find a value i for which $i \cdot \delta < x_0 \leq (i+1) \cdot \delta$.
- Then, we apply bisection process to the interval $[i \cdot \delta, (i+1) \cdot \delta]$ to find x_r .
- In this process, at each moment of time, we have an interval $[\underline{x}, \overline{x}]$ for which $\underline{x} < x_0 \leq \overline{x}$.
- We start with $[\underline{x}, \overline{x}] = [i \cdot \delta, (i+1) \cdot \delta].$
- At each iteration step, we apply the checking algorithm c to the midpoint $m = \frac{\underline{x} + \overline{x}}{2}$.

21. Optimal Algorithm (cont-d)

- If it turns out that $m < x_0$, we replace $[\underline{x}, \overline{x}]$ with $[m, \overline{x}]$.
- If it turns out that $x_0 \leq m$, we replace $[\underline{x}, \overline{x}]$ with [x, m].
- In both cases, we decrease the width of the interval by 2.
- We stop when this width becomes smaller than or equal to ε , i.e., when $\overline{x} \underline{x} \leq \varepsilon$.
- Then, we take \overline{x} as the desired output x_r .

Need to Select . . . How the First Doctor . . The Second Doctor . . . Why the Difference? Natural General Question Towards Formulating . . . Precise Formulation of . . Optimal Algorithm Proof Home Page Title Page **>>** Page 22 of 27 Go Back Full Screen Close Quit

22. Proof

- It is easy to prove that the algorithm \mathcal{A} indeed solves the search under constraints problem.
- Indeed, increasing the previously tested value $x \leq x_0$ is legitimate: since then $x + \delta \leq x_0 + \delta$.
- By this increase, for each x_0 , we will eventually find the value i for which $x_0 \leq (i+1) \cdot \delta$ namely, $i = \left\lceil \frac{x_0}{\delta} \right\rceil 1$.
- Then, by induction, we can prove that on each step of the bisection process, we indeed have $\underline{x} < x_0 \le \overline{x}$.
- And if $\underline{x} < x_0 \le \overline{x}$ and $\overline{x} \underline{x} \le \varepsilon$, then indeed $x_0 \le x_r = \overline{x} \le \underline{x} + \delta < x_0 + \varepsilon$.
- Optimality if also easy to prove.
- Indeed, the algorithm \mathcal{A} takes $\frac{x_0}{\delta}$ + const steps.

Need to Select...

How the First Doctor...

The Second Doctor...

Why the Difference?

Natural General Question

Towards Formulating . . .

Precise Formulation of . . .

Optimal Algorithm

Proof

Home Page

Title Page

Page 23 of 27

Go Back

Full Screen

Close

Quit

23. Proof (cont-d)

- Here the constant approximately equal to $\log_2\left(\frac{\delta}{\varepsilon}\right)$ covers the bisection part.
- ullet Let us show that other algorithms A cannot use fewer steps.
- Indeed, if v is the largest value for which we have already checked that $v < x_0$, then:
 - at the next test,
 - we cannot use the value $x > v + \delta$.
- Indeed, in this case, we have $v < x \delta$.
- So for any x_0 from the interval $(v, x \delta)$, we have $v < x_0 < x \delta$ and thus, $x > x_0 + \delta$.
- Hence, for this x_0 , the checking algorithm c is not applicable.

How the First Doctor . . The Second Doctor . . . Why the Difference? Natural General Question Towards Formulating . . . Precise Formulation of . . Optimal Algorithm Proof Home Page Title Page **>>** Page 24 of 27 Go Back Full Screen Close Quit

Need to Select . . .

24. Proof (cont-d)

- Thus, at each step:
 - we cannot increase the tested value x
 - by more than δ in comparison with the previously tested value.
- So, to get to a value $x \ge x_0$ which is our goal we need to make at least $\frac{x_0}{\delta}$ calls to c.
- The proposition is proven.

25. Comment

- This is exactly what the both doctors did.
- The difference is that:
 - the first doctor used $\delta = 200$, while
 - the second doctor used a much smaller value

$$\delta = 25.$$

26. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- HRD-1242122 (Cyber-ShARE Center of Excellence).

