People Prefer More Information About Uncertainty, But Perform Worse When Given This Information: An Explanation of the Paradoxical Phenomenon

Jieqiong Zhao¹, Olga Kosheleva², and Vladik Kreinovich³ School of Computing and Augmented Intelligence, Arizona State University 699 S Mill Ave, Tempe, AZ 85281, USA, jieqiong.zhao@asu.edu ^{2,3}Departments of ²Teacher Education, ³Computer Science University of Texas at El Paso, El Paso, Texas 79968, USA olgak@utep.edu, vladik@utep.edu

- 1. When making a decision, it is desirable to have as much information as possible
 - To make a decision, it is desirable to have as much information about the decision making situation as possible.
 - Indeed, additional information can help make a better decision.
 - This desirability has been confirmed by many polls.

2. This includes the need for more information about uncertainty

- In complex situations, to make decisions, we usually use computers.
- In general, computers process numbers.
- Thus, the information about a situation usually consists of several numbers, e.g., the values of the corresponding physical quantities.
- These values usually come from measurements.
- It could be direct measurement or so-called indirect measurement, i.e., processing of measurement results.
- Measurements are never absolutely accurate.
- There is always a non-zero difference $\Delta x \stackrel{\text{def}}{=} \widetilde{x} x$ between:
 - the measurement result \widetilde{x} and
 - the actual (unknown) value x of the corresponding quantity.
- This difference is known as the *measurement error*.

- 3. This includes the need for more information about uncertainty (cont-d)
 - It is desirable to get as much information as possible.
 - So, it is desirable to provide the users not only the measurement results, but also with the information about the measurement error.
 - The desirability of this information was indeed confirmed by the polls.

- 4. What do we know about the measurement errors: probabilistic and interval uncertainty
 - Ideally, we should know:
 - what are the possible values of the measurement error, and
 - what is the frequency (probability) with which each of these values will appear in the actual measurements.
 - In other words, ideally, we should know the probability distribution of the measurement errors.
 - To determine this probability distribution, we need to *calibrate* the measuring instrument, i.e., to compare:
 - the values \widetilde{x}_k measured by this instrument and
 - the values x'_k measured (for the same actual quantity) by a much more accurate measuring instrument (known as standard).

- 5. What do we know about the measurement errors: probabilistic and interval uncertainty (cont-d)
 - The standard measuring instrument (SMI) is so much more accurate that:
 - in comparison with the measurement errors of the tested measuring instrument (MI),
 - we can safely ignore the measurement errors of the SMI.
 - Thus, we can assume that SMI's measurement results x'_k are equal to the corresponding actual values x_k .
 - So, the differences $\widetilde{x}_k x_k'$ can be safely assumed to equal to the values of the measurement errors $\widetilde{x}_k x_k$.
 - Hence, from the resulting sample of these differences, we can determine the desired probability distribution.
 - This procedure is rather time-consuming and expensive since the use of the complex standard measuring instruments is not cheap.

- 6. What do we know about the measurement errors: probabilistic and interval uncertainty (cont-d)
 - As a result, in practice, such a detailed calibration is often not performed.
 - Instead, the manufacturer of the measuring instruments provides a guaranteed upper bound Δ on $|\Delta x|$: $|\Delta x| \leq \Delta$.
 - Under this information:
 - after we perform the measurement and get the measurement result \widetilde{x} ,
 - the only information that we have about the actual (unknown) value x of the measured quantity is that $x \in [\underline{x}, \overline{x}] \stackrel{\text{def}}{=} [\widetilde{x} \Delta, \widetilde{x} + \Delta]$.
 - This uncertainty is known as *interval uncertainty*.

7. Probability distribution of the measurement error is often Gaussian

- In many practical cases, the measurement error is caused by the large number of small independent factors.
- It is known that the probability distribution of the joint effect of many independent small factors is close to Gaussian.
- The corresponding mathematical result is known as the Central Limit Theorem.
- Thus, we can safely assume that the measurement error is distributed according to the normal (Gaussian) distribution.
- This assumption is in good accordance with the empirical data, according to which:
 - in the majority of the cases,
 - the distribution is indeed Gaussian.

8. Probability distribution of the measurement error is often Gaussian (cont-d)

- The Gaussian distribution is uniquely determined by two parameters: mean μ and standard deviation σ .
- By comparing the measurement results with the results of a standard measuring instrument:
 - we can determine the bias
 - as the arithmetic average of the observed differences between the measurements by two instruments: $\mu \approx \frac{1}{n} \cdot \sum_{k=1}^{n} (\widetilde{x}_k x_k')$.
- Once we know μ , we can recalibrate the scale i.e., subtract this mean value μ from each measurement result.
- In other words, we replace each value \widetilde{x} with $\widetilde{x}' \stackrel{\text{def}}{=} \widetilde{x} \mu$.
- After that, the mean will be 0.

- 9. Probability distribution of the measurement error is often Gaussian (cont-d)
 - Also, we can determine the standard deviation as the mean squared value of the (re-calibrated) difference

$$\sigma \approx \sqrt{\frac{1}{n} \cdot \sum_{k=1}^{n} (\widetilde{x}'_k - x'_k)^2}.$$

• So, it makes sense to assume that the measurement error is normally distributed with mean 0 and the known standard deviation σ .

10. Confidence intervals

• It is known that with high probability, all the values of the normally distributed random variable are located within the interval

$$[\mu - k_o \cdot \sigma, \mu + k_0 \cdot \sigma]$$
 for an appropriate k_0 :

- for $k_0 = 2$, this is true with probability 95%,
- for $k_0 = 3$, this is true with probability 99.9%, and
- for $k_0 = 6$, this is true with probability $1 10^{-8}$.
- These intervals are particular cases of *confidence intervals*.
- These intervals is what is often supplied to the users as a partial information about the probability distributions.

11. What happened when decision maker received confidence intervals: paradoxical situation

- The decisions makers expressed the desire to receive information about uncertainty.
- So, they were supplied, in addition to measurement results, with the corresponding confidence intervals.
- And here, a strange thing happened.
- One would expect that this additional information would:
 - help the decision makers make better decisions,
 - or at least did not degrade the quality of their decisions.

12. What happened when decision maker received confidence intervals: paradoxical situation (cont-d)

- However, in reality:
 - the decisions of those users who got this additional information were worse than
 - the decisions make by users from the control group that did not receive this information.
- How can we explain this paradoxical phenomenon?

13. Preliminaries

- To understand the above paradoxical phenomenon, let us recall how rational people make decisions.
- Let us start with the case of full information, when we know all the probabilities.
- According to decision theory, preferences of each rational person can be described by assigning:
 - to each alternative x,
 - a numerical value u(x) called its *utility*.
- To assign these numerical values, one need to select two alternatives:
 - a very good alternative A_+ which is better than anything that the decision maker will actually encounter, and
 - a very bad alternative A_{-} which is worse than anything that the decision maker will actually encounter.

- Once these two alternatives are selected, we can form, for each value p from the interval [0,1], a lottery L(p) in which:
 - we get A_+ with probability p, and
 - we get A_{-} with the remaining probability 1-p.
- For any actual alternative x, when p is close to 0, the lottery L(p) is close to A_{-} and is, thus, worse than x: $A_{-} < x$.
- When p is close to 1, the lottery L(p) is close to A_+ and is, thus, better than x: $x < A_+$.
- When we move from 0 to 1, there is a threshold value at which the relation L(p) < x is replaced with x < L(p).
- This threshold value u(x) is what is called the utility of x.

- By definition of utility, each alternative x is equivalent, to the decision maker, to a lottery L(u(x)) in which:
 - we get A_+ with probability u(x), and
 - we get A_{-} with the remaining probability 1 u(x).
- In general, the larger the probability p of getting the very good alternative A_+ , the better the lottery.
- Thus, if we need to select between several lotteries of this type, we should select the lottery with the largest values of the probability p.
- Each alternative x is equal to the lottery L(p) with probability p = u(x).
- This means that we should always select the alternative with the largest value of utility.

- What is the utility of an action in which we get n possible outcomes, for each of which we know:
 - its probability p_i and
 - its utility u_i ?
- By definition of utility, each outcome is equivalent to a lottery $L(u_i)$ in which:
 - we get A_+ with probability u_i , and
 - we get A_{-} with probability $1 u_i$.
- Thus, to the user, the action is equivalent to a 2-stage lottery in which:
 - we first select each i with probability p_i and
 - then, depending on what i we selected on the first stage, select A_+ with probability u_i and A_- with probability $1 u_i$.
- As a result of this two-stage lottery, we get either A_+ or A_- .

- The probability u of getting A_+ is determined by the formula of full probability: $u = p_1 \cdot u_1 + \ldots + p_n \cdot u_n$.
- Thus, by definition of utility, this value u is the utility of the action under consideration.
- The right-hand side of the formula for u is the expected value of the utility; so, we can conclude that:
 - the utility of an action with random consequences
 - is equal to the expected value of the utility of different consequences.

18. Comment

- The numerical value of the utility depends on the selection of the alternatives A_+ and A_- .
- If we select a different pair A'_{+} and A'_{-} , then we will have different numerical values u'(x).
- It turns out that for every two pairs of alternatives, there exist real numbers a > 0 and b for which, for each x, we have $u'(x) = a \cdot u(x) + b$.
- In other words, utility is defined modulo a linear transformation.
- This is similar to the fact that, e.g., the numerical value of the moment of time also depends:
 - on what starting point we use to measure time, and on what measuring unit we use.
- For time, all the scales are related to each other by an appropriate linear transformation $t' = a \cdot t + b$ for some a > 0 and b.

19. How rational people make decisions under interval uncertainty

- As we have mentioned:
 - in many practical situations,
 - we only know the values of the quantities (that describe the state of the world) with interval uncertainty.
- In this case, we can describe the consequences and their utility also under interval uncertainty.
- In other words, for each possible decision x:
 - instead of the exact value u(x) of the corresponding utility,
 - we only know the interval $[\underline{u}(x), \overline{u}(x)]$ of possible utility values.
- How can we make a decision in this case?
- To make a decision, we need to assign, to each interval $[\underline{u}, \overline{u}]$, an equivalent numerical value $u(\underline{u}, \overline{u})$.

20. How rational people make decisions under interval uncertainty (cont-d)

- As we have mentioned, utility is defined modular a linear transformation.
- There is no fixed selection of the alternatives A_{+} and A_{-} .
- So it makes sense to require that the function $u(\underline{u}, \overline{u})$ remains the same for all the scales, i.e., that:
 - if $u = u(\underline{u}, \overline{u})$, then
 - for all a > 0 and b, we should have $u' = u(\underline{u}', \overline{u}')$, where $u' = a \cdot u + b$, $\underline{u}' = a \cdot \underline{u} + b$, and $\overline{u}' = a \cdot \overline{u} + b$.
- Let us denote $\alpha \stackrel{\text{def}}{=} u(0,1)$.
- If we know that the utility is between 0 and 1, then the situation is:
 - clearly better (or at least as good) than when utility is 0, and
 - worse (or at least as good) then when utility is 1.

21. How rational people make decisions under interval uncertainty (cont-d)

- Thus, we must have $0 \le \alpha \le 1$.
- Every interval $[\underline{u}, \overline{u}]$ can be obtained from the interval [0, 1] by a linear transformation $u \mapsto a \cdot t + b$ for $a = \overline{u} \underline{u}$ and $b = \underline{u}$.
- Thus, due to invariance, from $\alpha = u(0,1)$, we can conclude that $u(u, \overline{u}) = a \cdot \alpha + b = \alpha \cdot (\overline{u} u) + u = \alpha \cdot \overline{u} + (1 \alpha) \cdot u$.
- This formula was first proposed by the Nobelist Leo Hurwicz and is thus known as *Hurwicz optimism-pessimism criterion*.

22. How rational people make decisions under interval uncertainty (cont-d)

- The name comes from the fact that:
 - for $\alpha = 1$, this means only taking into account the best-case value \overline{u} the case of extreme optimism, while
 - for $\alpha = 0$, this means only taking into account the worst-case value \underline{u} the case of extreme pessimism.
- The value α is different for different decision makers, depending on their level of optimism and pessimism.

23. Finally, an explanation

- Now we are ready to produce the desired explanation.
- Let us consider the simplest possible setting, when the decision maker is provided with the information about each possible decision x:
 - the estimate $\widetilde{u}(x)$ of the utility u(x), and
 - the information that the difference $\Delta u(x) \stackrel{\text{def}}{=} \widetilde{u}(x) u(x)$ is normally distributed with 0 mean and standard deviation σ .
- In this *ideal* case:
 - the decision maker's equivalent utility of each possible decision x
 - is equal to the expected value of the random utility value $u(x) = \widetilde{u}(x) \Delta u(x)$, i.e., to the value $\widetilde{u}(x)$.
- This was the ideal case.
- In our experiment, we never report the whole distribution to the decision maker.

24. Finally, an explanation (cont-d)

• Instead, we report either a single value $\widetilde{u}(x)$ or the confidence interval

$$[\widetilde{u}(x) - k_0 \cdot \sigma, \widetilde{u}(x) + k_0 \cdot \sigma].$$

- In the first case, when we supply no information about uncertainty, the decision maker uses the provided value $\widetilde{u}(x)$ in his/her decisions.
- It so happens that this value is exactly what we would get if we knew the exact distributions.
- In other words, in this case, the decision maker makes an optimal decision.
- On the other hand:
 - if we provide the decision maker with the confidence interval,
 - then the decision maker using Hurwicz criterion will assign, to each possible decision x, an equivalent value

$$\alpha \cdot (\widetilde{u}(x) + k_0 \cdot \sigma) + (1 - \alpha) \cdot (\widetilde{u}(x) - k_0 \cdot \sigma) = \widetilde{u}(x) + (2\alpha - 1) \cdot k_0 \cdot \sigma.$$

25. Finally, an explanation (cont-d)

• Thus:

- for almost all possible values α from the interval [0,1] with the only exception of the value $\alpha = 0.5$,
- this value will be different from the optimal value (corresponding to the full information).
- So, the decision based on such values will be not as good as the optimal decision.
- This is exactly what we observe in the above-described seemingly paradoxical experiment.
- Note that the worsening of the decision happens when we provide the decision make with *partial* information about uncertainty.
- If we provide the decision maker with full information, the decision will, of course, be optimal.

26. Acknowledgments

This work was supported in part by:

- National Science Foundation grants 1623190, HRD-1834620, HRD-2034030, and EAR-2225395;
- AT&T Fellowship in Information Technology;
- program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478, and
- a grant from the Hungarian National Research, Development and Innovation Office (NRDI).