Dealing with Uncertainties in Data Processing: from Probabilistic and Interval Uncertainty to Combination of Different Approaches

Vladik Kreinovich

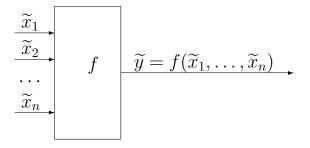
Department of Computer Science, University of Texas at El Paso, El Paso, TX 79968, USA vladik@utep.edu http://www.cs.utep.edu/vladik

Interval computations website: http://www.cs.utep.edu/interval-comp

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting Home Page **b**b Page 1 of 80 Go Back Full Screen Close

1. General Problem of Data Processing under Uncertainty

- Indirect measurements: way to measure y that are difficult (or even impossible) to measure directly.
- *Idea*: $y = f(x_1, ..., x_n)$



• Problem: measurements are never 100% accurate: $\widetilde{x}_i \neq x_i \ (\Delta x_i \neq 0)$ hence

$$\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n) \neq y = f(x_1, \dots, x_n).$$

What are bounds on $\Delta y \stackrel{\text{def}}{=} \widetilde{y} - y$?

General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval...

Case Study: . . .

Case Study: Detecting . .

Home Page

Title Page

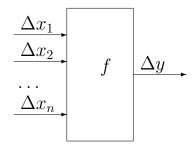
Page 2 of 80

Go Back

Full Screen

Close

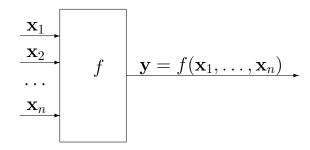
2. Probabilistic and Interval Uncertainty



- Traditional approach: we know probability distribution for Δx_i (usually Gaussian).
- Where it comes from: calibration using standard MI.
- *Problem:* calibration is not possible in:
 - fundamental science
 - manufacturing
- Solution: we know upper bounds Δ_i on $|\Delta x_i|$ hence

$$x_i \in [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i].$$

3. Interval Computations: A Problem



- Given: an algorithm $y = f(x_1, ..., x_n)$ and n intervals $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i]$.
- Compute: the corresponding range of y: $[y, \overline{y}] = \{ f(x_1, \dots, x_n) \mid x_1 \in [\underline{x}_1, \overline{x}_1], \dots, x_n \in [\underline{x}_n, \overline{x}_n] \}.$
- Fact: NP-hard even for quadratic f.
- Challenge: when are feasible algorithms possible?
- Challenge: when computing $\mathbf{y} = [\underline{y}, \overline{y}]$ is not feasible, find a good approximation $\mathbf{Y} \supseteq \mathbf{y}$.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting. Home Page Title Page Page 4 of 80 Go Back Full Screen Close Quit

4. Example 1: Formulation of the Problem

- Given:
 - $y = f(x_1, x_2) = x_1^2 + x_2^2$,
 - $\tilde{x}_1 = 1, \ \tilde{x}_2 = -1,$
 - $\Delta_1 = \Delta_2 = 0.1$.
- In this case, x_1 can be anywhere in

$$[\widetilde{x}_1 - \Delta_1, \widetilde{x}_1 + \Delta_1] = [1 - 0.1, 1 + 0.1] = [0.9, 1.1].$$

• Similarly, x_2 can be anywhere in

$$[\widetilde{x}_2 - \Delta_2, \widetilde{x}_2 + \Delta_2] = [-1 - 0.1, -1 + 0.1] = [-1.1, -0.9].$$

- Here, $\widetilde{y} = (\widetilde{x}_1)^2 + (\widetilde{x}_2)^2 = 1^2 + (-1)^2 = 2$.
- Find: the range $[y, \overline{y}]$ of possible values of y.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting. Home Page Title Page 44 **>>** Page 5 of 80 Go Back Full Screen Close Quit

5. Example 1: Actual Range

- Reminder: $y = x_1^2 + x_2^2 = x_1^2 + |x_2|^2$, $x_1 \in [0.9, 1.1], x_2 \in [-1.1, -0.9].$
- Actual range: the function $y = x_1^2 + x_2^2$ is increasing in x_1 and $|x_2|$.
- \bullet So, the smallest value of y is

$$y = 0.9^2 + (-0.9)^2 = 0.81 + 0.81 = 1.62.$$

 \bullet The largest value of y is

$$\overline{y} = 1.1^2 + (-1.1)^2 = 1.21 + 1.21 = 2.42.$$

• Thus, the desired range is $[\underline{y}, \overline{y}] = [1.62, 2.42].$

6. Exercise 1: Formulation of the Problem

- Given:
 - $y = f(x_1, x_2) = x_1^2 x_1 \cdot x_2 + x_2^2$,
 - $\bullet \ \widetilde{x}_1 = 2, \ \widetilde{x}_2 = -2,$
 - $\Delta_1 = \Delta_2 = 0.2$.
- In this case, x_1 can be anywhere in

$$[\widetilde{x}_1 - \Delta_1, \widetilde{x}_1 + \Delta_1] = [2 - 0.2, 2 + 0.2] = [1.8, 2.2].$$

• Similarly, x_2 can be anywhere in

$$[\widetilde{x}_2 - \Delta_2, \widetilde{x}_2 + \Delta_2] = [-2 - 0.2, -2 + 0.2] = [-2.2, -1.8].$$

- $\widetilde{y} = (\widetilde{x}_1)^2 \widetilde{x}_1 \cdot \widetilde{x}_2 + (\widetilde{x}_2)^2 = 2^2 2 \cdot (-2) + (-2)^2 = 12.$
- Find: the range $[y, \overline{y}]$ of possible values of y.

7. Alternative Approach: Maximum Entropy

- Situation: in many practical applications, it is very difficult to come up with the probabilities.
- Traditional engineering approach: use probabilistic techniques.
- *Problem:* many different probability distributions are consistent with the same observations.
- Solution: select one of these distributions e.g., the one with the largest entropy.
- Example single variable: if all we know is that $x \in [\underline{x}, \overline{x}]$, then MaxEnt leads to a uniform distribution.
- Example multiple variables: different variables are independently distributed.

8. Limitations of Maximum Entropy Approach

- Example: simplest algorithm $y = x_1 + \ldots + x_n$.
- Measurement errors: $\Delta x_i \in [-\Delta, \Delta]$.
- Analysis: $\Delta y = \Delta x_1 + \ldots + \Delta x_n$.
- Worst case situation: $\Delta y = n \cdot \Delta$.
- Maximum Entropy approach: due to Central Limit Theorem, Δy is \approx normal, with $\sigma = \Delta \cdot \frac{\sqrt{n}}{\sqrt{3}}$.
- Why this may be inadequate: we get $\Delta \sim \sqrt{n}$, but due to correlation, it is possible that $\Delta = n \cdot \Delta \sim n \gg \sqrt{n}$.
- Conclusion: using a single distribution can be very misleading, especially if we want guaranteed results.
- Examples: high-risk application areas such as space exploration or nuclear engineering.

9. Linearization is Usually Possible

• In many practical situations, the errors Δx_i are small, so we can ignore quadratic terms:

$$\Delta y = \widetilde{y} - y = f(\widetilde{x}_1, \dots, \widetilde{x}_n) - f(x_1, \dots, x_n) =$$

$$f(\widetilde{x}_1, \dots, \widetilde{x}_n) - f(\widetilde{x}_1 - \Delta x_1, \dots, \widetilde{x}_n - \Delta x_n) \approx$$

$$c_1 \cdot \Delta x_1 + \dots + c_n \cdot \Delta x_n,$$
where $c_i \stackrel{\text{def}}{=} \frac{\partial f}{\partial x_i}(\widetilde{x}_1, \dots, \widetilde{x}_n).$

• For a linear function, the largest Δy is obtained when each term $c_i \cdot \Delta x_i$ is the largest:

$$\Delta = |c_1| \cdot \Delta_1 + \ldots + |c_n| \cdot \Delta_n.$$

• Due to the linearization assumption, we can estimate each partial derivative c_i as

$$c_i \approx \frac{f(\widetilde{x}_1, \dots, \widetilde{x}_{i-1}, \widetilde{x}_i + h_i, \widetilde{x}_{i+1}, \dots, \widetilde{x}_n) - \widetilde{y}}{h_i}.$$

General Problem of...

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval...

Case Study: . . .

Case Study: Detecting . .

Home Page

Title Page

>>

Page 10 of 80

Go Back

Full Screen

Close

10. Example 1: Reminder

- Given:
 - $y = f(x_1, x_2) = x_1^2 + x_2^2$,
 - $\tilde{x}_1 = 1$, $\tilde{x}_2 = -1$,
 - $\Delta_1 = \Delta_2 = 0.1$.
- In this case, x_1 can be anywhere in

$$[\widetilde{x}_1 - \Delta_1, \widetilde{x}_1 + \Delta_1] = [1 - 0.1, 1 + 0.1] = [0.9, 1.1].$$

• Similarly, x_2 can be anywhere in

$$[\tilde{x}_2 - \Delta_2, \tilde{x}_2 + \Delta_2] = [-1 - 0.1, -1 + 0.1] = [-1.1, -0.9].$$

- Here, $\widetilde{y} = (\widetilde{x}_1)^2 + (\widetilde{x}_2)^2 = 1^2 + (-1)^2 = 2$.
- Find: the range $[y, \overline{y}]$ of possible values of y.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting. Home Page Title Page 44 **>>** Page 11 of 80 Go Back Full Screen Close

11. Example 1: Solution by Linearization

- Reminder: $y = x_1^2 + x_2^2$, $\widetilde{y} = 2$.
- Here:

$$c_1 = \frac{\partial f}{\partial x_i}(\widetilde{x}_1, \dots, \widetilde{x}_n) = 2\widetilde{x}_1 = 2 \cdot 1 = 2;$$

$$c_2 = \frac{\partial f}{\partial x_i}(\widetilde{x}_1, \dots, \widetilde{x}_n) = 2\widetilde{x}_2 = 2 \cdot (-1) = -2.$$

• Thus,

$$\Delta = |c_1| \cdot \Delta_1 + |c_2| \cdot \Delta_2 = 2 \cdot 0.1 + |-2| \cdot 0.1 =$$
$$2 \cdot 0.1 + 2 \cdot 0.1 = 0.4.$$

• Estimated range:

$$[\widetilde{y} - \Delta, \widetilde{y} + \Delta] = [2 - 0.4, 2 + 0.4] = [1.6, 2.4].$$

• Comment. This is close to the actual range [1.62, 2.42].

General Problem of...

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval...

Case Study: . . .

Case Study: Detecting . . .

Home Page

Title Page

Page 12 of 80

Go Back

Full Screen

Close

Exercise 2

- Given:
 - $y = f(x_1, x_2) = x_1^2 x_1 \cdot x_2 + x_2^2$
 - $\bullet \ \widetilde{x}_1 = 2, \ \widetilde{x}_2 = -2.$
 - $\Delta_1 = \Delta_2 = 0.2$.
- In this case, x_1 can be anywhere in

$$[\widetilde{x}_1 - \Delta_1, \widetilde{x}_1 + \Delta_1] = [2 - 0.2, 2 + 0.2] = [1.8, 2.2].$$

• Similarly, x_2 can be anywhere in

$$[\widetilde{x}_2 - \Delta_2, \widetilde{x}_2 + \Delta_2] = [-2 - 0.2, -2 + 0.2] = [-2.2, -1.8].$$

- $\widetilde{y} = (\widetilde{x}_1)^2 \widetilde{x}_1 \cdot \widetilde{x}_2 + (\widetilde{x}_2)^2 = 2^2 2 \cdot (-2) + (-2)^2 = 12.$
- Task: use linearization to find the range $|y, \overline{y}|$ of possible values of y.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting. Home Page Title Page 44 **>>** Page 13 of 80 Go Back Full Screen

Close

13. Linearization: Algorithm

To compute the range \mathbf{y} of y, we do the following.

- First, we apply the algorithm f to the original estimates $\widetilde{x}_1, \ldots, \widetilde{x}_n$, resulting in the value $\widetilde{y} = f(\widetilde{x}_1, \ldots, \widetilde{x}_n)$.
- Second, for all i from 1 to n,
 - we compute $f(\widetilde{x}_1, \dots, \widetilde{x}_{i-1}, \widetilde{x}_i + h_i, \widetilde{x}_{i+1}, \dots, \widetilde{x}_n)$ for some small h_i and then
 - we compute

$$c_i = \frac{f(\widetilde{x}_1, \dots, \widetilde{x}_{i-1}, \widetilde{x}_i + h_i, \widetilde{x}_{i+1}, \dots, \widetilde{x}_n) - \widetilde{y}}{h_i}.$$

- Finally, we compute $\Delta = |c_1| \cdot \Delta_1 + \ldots + |c_n| \cdot \Delta_n$ and the desired range $\mathbf{y} = [\widetilde{y} \Delta, \widetilde{y} + \Delta]$.
- Problem: we need n+1 calls to f, and this is often too long.

14. Example 1: Reminder

- Given:
 - $y = f(x_1, x_2) = x_1^2 + x_2^2$,
 - $\tilde{x}_1 = 1$, $\tilde{x}_2 = -1$,
 - $\Delta_1 = \Delta_2 = 0.1$.
- In this case, x_1 can be anywhere in

$$[\widetilde{x}_1 - \Delta_1, \widetilde{x}_1 + \Delta_1] = [1 - 0.1, 1 + 0.1] = [0.9, 1.1].$$

• Similarly, x_2 can be anywhere in

$$[\widetilde{x}_2 - \Delta_2, \widetilde{x}_2 + \Delta_2] = [-1 - 0.1, -1 + 0.1] = [-1.1, -0.9].$$

- Here, $\widetilde{y} = (\widetilde{x}_1)^2 + (\widetilde{x}_2)^2 = 1^2 + (-1)^2 = 2$.
- Find: the range $[y, \overline{y}]$ of possible values of y.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting. Home Page Title Page 44 **>>** Page 15 of 80 Go Back Full Screen Close Quit

15. Example 1: Solution 2 by Linearization

- Reminder: $f(x_1, x_2) = x_1^2 + x_2^2$, $\tilde{y} = 2$.
- Let us take $h_1 = h_2 = 0.1$; then:

$$c_{1} = \frac{f(\widetilde{x}_{1} + 0.1, \widetilde{x}_{2}) - \widetilde{y}}{0.1} = \frac{(\widetilde{x}_{1} + 0.1)^{2} + (\widetilde{x}_{2})^{2} - 2}{0.1} = \frac{1.1^{2} + 1 - 2}{0.1} = \frac{1.21 + 1 - 2}{0.1} = \frac{0.21}{0.1} = 2.1;$$

$$c_{2} = \frac{f(\widetilde{x}_{1}, \widetilde{x}_{2} + 0.1) - \widetilde{y}}{0.1} = \frac{(\widetilde{x}_{1})^{2} + (\widetilde{x}_{2} + 0.1)^{2} - 2}{0.1} = \frac{1^{2} + (-0.9)^{2} - 2}{0.1} = \frac{1 + 0.81 - 2}{0.1} = \frac{-0.19}{0.1} = 1.9.$$

$$\Delta = |c_{1}| \cdot \Delta_{1} + |c_{2}| \cdot \Delta_{2} = 2.1 \cdot 0.1 + |-1.9| \cdot 0.1 = 2.1 \cdot 0.1 + 1.9 \cdot 0.1 = 0.4.$$

• Estimated range:

$$[\widetilde{y} - \Delta, \widetilde{y} + \Delta] = [2 - 0.4, 2 + 0.4] = [1.6, 2.4].$$

• Comment. This is close to the actual range [1.62, 2.42].

General Problem of...

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval...

Case Study: . . .

Case Study: Detecting . .

Home Page

Title Page

Page 16 of 80

Go Back

Full Screen

Close

16. Exercise 3: Reminder

- Given:
 - $y = f(x_1, x_2) = x_1^2 x_1 \cdot x_2 + x_2^2$,
 - $\bullet \ \widetilde{x}_1 = 2, \ \widetilde{x}_2 = -2,$
 - $\Delta_1 = \Delta_2 = 0.2$.
- In this case, x_1 can be anywhere in

$$[\widetilde{x}_1 - \Delta_1, \widetilde{x}_1 + \Delta_1] = [2 - 0.2, 2 + 0.2] = [1.8, 2.2].$$

• Similarly, x_2 can be anywhere in

$$[\widetilde{x}_2 - \Delta_2, \widetilde{x}_2 + \Delta_2] = [-2 - 0.2, -2 + 0.2] = [-2.2, -1.8].$$

- $\widetilde{y} = (\widetilde{x}_1)^2 \widetilde{x}_1 \cdot \widetilde{x}_2 + (\widetilde{x}_2)^2 = 2^2 2 \cdot (-2) + (-2)^2 = 12.$
- Task: use linearization to find the range $[\underline{y}, \overline{y}]$ of possible values of y.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting. Home Page Title Page 44 **>>** Page 17 of 80 Go Back Full Screen

Close

17. Cauchy Deviate Method: Idea

• For large n, we can further reduce the number of calls to f if we Cauchy distributions, w/pdf

$$\rho(z) = \frac{\Delta}{\pi \cdot (z^2 + \Delta^2)}.$$

- Known property of Cauchy transforms:
 - if z_1, \ldots, z_n are independent Cauchy random variables w/parameters $\Delta_1, \ldots, \Delta_n$,
 - then $z = c_1 \cdot z_1 + \ldots + c_n \cdot z_n$ is also Cauchy distributed, w/parameter

$$\Delta = |c_1| \cdot \Delta_1 + \ldots + |c_n| \cdot \Delta_n.$$

• This is exactly what we need to estimate interval uncertainty!

18. Cauchy Deviate Method: Towards Implementation

- To implement the Cauchy idea, we must answer the following questions:
 - how to simulate the Cauchy distribution; and
 - how to estimate the parameter Δ of this distribution from a finite sample.
- Simulation can be based on the functional transformation of uniformly distributed sample values:

$$\delta_i = \Delta_i \cdot \tan(\pi \cdot (r_i - 0.5)), \text{ where } r_i \sim U([0, 1]).$$

• To estimate Δ , we can apply the Maximum Likelihood Method $\rho(\delta^{(1)}) \cdot \rho(\delta^{(2)}) \cdot \ldots \cdot \rho(\delta^{(N)}) \to \text{max}$, i.e., solve

$$\frac{1}{1+\left(\frac{\delta^{(1)}}{\Delta}\right)^2}+\ldots+\frac{1}{1+\left(\frac{\delta^{(N)}}{\Delta}\right)^2}=\frac{N}{2}.$$

General Problem of...

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . .

Home Page

Title Page

Page 19 of 80

Go Back

Full Screen

Close

19. Cauchy Deviates Method: Algorithm

- Apply f to \widetilde{x}_i ; we get $\widetilde{y} := f(\widetilde{x}_1, \dots, \widetilde{x}_n)$.
- For k = 1, 2, ..., N, repeat the following:
 - use the standard RNG to draw $r_i^{(k)} \sim U([0,1]),$ i = 1, 2, ..., n;
 - compute Cauchy distributed values $c_i^{(k)} := \tan(\pi \cdot (r_i^{(k)} 0.5));$
 - compute $K := \max_i |c_i^{(k)}|$ and normalized errors $\delta_i^{(k)} := \Delta_i \cdot c_i^{(k)}/K$;
 - compute the simulated "actual values" $x_i^{(k)} := \widetilde{x}_i \delta_i^{(k)};$
 - compute simulated errors of indirect measurement: $\delta^{(k)} := K \cdot \left(\widetilde{y} f\left(x_1^{(k)}, \dots, x_n^{(k)}\right) \right);$
- Compute Δ by applying the bisection method to solve the Maximum Likelihood equation.

20. Important Comment

- To avoid confusion, we should emphasize that:
 - in contrast to the Monte-Carlo solution for the probabilistic case,
 - the use of Cauchy distribution in the interval case is a computational trick,
 - it is not a truthful simulation of the actual measurement error Δx_i .

• Indeed:

- we know that the actual value of Δx_i is always inside the interval $[-\Delta_i, \Delta_i]$, but
- a Cauchy distributed random attains values outside this interval as well.

21. Approximate Methods – Such As Linearizaion – Are Sometimes Not Sufficient

- In many application areas, it is sufficient to have an approximate estimate of y.
- Sometimes, we need to guarantee that y does not exceed a certain threshold y_0 . Examples:
 - in *nuclear engineering*, the temperatures and the neutron flows should not exceed the critical values;
 - a space ship lands on the planet and does not fly past it, etc.
- The only way to guarantee this is to have an interval $\mathbf{Y} = [\underline{Y}, \overline{Y}]$ for which $\mathbf{y} \subseteq \mathbf{Y}$ and $\overline{Y} \leq y_0$.
- Such an interval is called an *enclosure*.
- Computing such an enclosure is one of the main tasks of interval computations.

22. Interval Computations: A Brief History

- Origins: Archimedes (Ancient Greece)
- Modern pioneers: Warmus (Poland), Sunaga (Japan), Moore (USA), 1956–59
- First boom: early 1960s.
- First challenge: taking interval uncertainty into account when planning spaceflights to the Moon.
- Current applications (sample):
 - design of elementary particle colliders: Berz, Kyoko (USA)
 - will a comet hit the Earth: Berz, Moore (USA)
 - robotics: Jaulin (France), Neumaier (Austria)
 - chemical engineering: Stadtherr (USA)

23. Interval Arithmetic: Foundations of Interval Techniques

• *Problem:* compute the range

$$[\underline{y},\overline{y}] = \{f(x_1,\ldots,x_n) \mid x_1 \in [\underline{x}_1,\overline{x}_1],\ldots,x_n \in [\underline{x}_n,\overline{x}_n]\}.$$

- Interval arithmetic: for arithmetic operations $f(x_1, x_2)$ (and for elementary functions), we have explicit formulas for the range.
- Examples: when $x_1 \in \mathbf{x}_1 = [\underline{x}_1, \overline{x}_1]$ and $x_2 \in \mathbf{x}_2 = [\underline{x}_2, \overline{x}_2]$, then:
 - The range $\mathbf{x}_1 + \mathbf{x}_2$ for $x_1 + x_2$ is $[\underline{x}_1 + \underline{x}_2, \overline{x}_1 + \overline{x}_2]$.
 - The range $\mathbf{x}_1 \mathbf{x}_2$ for $x_1 x_2$ is $[\underline{x}_1 \overline{x}_2, \overline{x}_1 \underline{x}_2]$.
 - The range $\mathbf{x}_1 \cdot \mathbf{x}_2$ for $x_1 \cdot x_2$ is $[y, \overline{y}]$, where

$$\underline{y} = \min(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \overline{x}_2, \overline{x}_1 \cdot \underline{x}_2, \overline{x}_1 \cdot \overline{x}_2);$$

$$\overline{y} = \max(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \overline{x}_2, \overline{x}_1 \cdot \underline{x}_2, \overline{x}_1 \cdot \overline{x}_2).$$

• The range $1/\mathbf{x}_1$ for $1/x_1$ is $[1/\overline{x}_1, 1/\underline{x}_1]$ (if $0 \notin \mathbf{x}_1$).

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting . . Home Page Title Page **>>** Page 24 of 80 Go Back Full Screen Close

24. Example

Let $\mathbf{x}_1 = [1, 2]$ and $\mathbf{x}_2 = [-3, 1]$. Then: $\mathbf{x}_1 + \mathbf{x}_2 = [1, 2] + [-3, 1] = [1 + (-3), 2 + 1] = [-2, 3];$ $\mathbf{x}_1 - \mathbf{x}_2 = [1, 2] - [-3, 1] = [1 - 1, 2 - (-3)] = [0, 5];$ $\mathbf{x}_1 \cdot \mathbf{x}_2 = [1, 2] \cdot [-3, 1] = [\min(1 \cdot (-3), 1 \cdot 1, 2 \cdot (-3), 2 \cdot 1), \max(1 \cdot (-3), 1 \cdot 1, 2 \cdot (-3), 2 \cdot 1)] = [\min(-3, 1, -6, 2), \max(-3, 1, -6, 2)] = [-6, 2];$

 $1/\mathbf{x}_1 = 1/[1, 2] = [1/2, 1/1] = [0.5, 1].$

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting Home Page Title Page 44 **>>** Page 25 of 80 Go Back Full Screen

Close

25. Exercise 4

- Given: $\mathbf{x}_1 = [-2, 3]$ and $\mathbf{x}_2 = [1, 4]$.
- Task: compute $\mathbf{x}_1 + \mathbf{x}_2$, $\mathbf{x}_1 \mathbf{x}_2$, $\mathbf{x}_1 \cdot \mathbf{x}_2$, and $1/\mathbf{x}_2$.

26. Straightforward Interval Computations: Example

- Example: $f(x) = (x-2) \cdot (x+2), x \in [1,2].$
- How will the computer compute it?
 - $\bullet r_1 := x 2;$
 - $\bullet r_2 := x + 2;$
 - $r_3 := r_1 \cdot r_2$.
- Main idea: perform the same operations, but with intervals instead of numbers:
 - $\mathbf{r}_1 := [1, 2] [2, 2] = [-1, 0];$
 - $\mathbf{r}_2 := [1, 2] + [2, 2] = [3, 4];$
 - $\mathbf{r}_3 := [-1, 0] \cdot [3, 4] = [-4, 0].$
- Actual range: $f(\mathbf{x}) = [-3, 0]$.
- Comment: this is just a toy example, there are more efficient ways of computing an enclosure $Y \supseteq y$.

27. Exercise 5: Task

Use straightforward interval computations to compute the range of the function $f(x) = (x-1) \cdot (x+1)$ for $x \in [0,2]$.

28. First Idea: Use of Monotonicity

- Reminder: for arithmetic, we had exact ranges.
- Reason: $+, -, \cdot$ are monotonic in each variable.
- How monotonicity helps: if $f(x_1, ..., x_n)$ is (non-strictly) increasing $(f \uparrow)$ in each x_i , then

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)=[f(\underline{x}_1,\ldots,\underline{x}_n),f(\overline{x}_1,\ldots,\overline{x}_n)].$$

- Similarly: if $f \uparrow$ for some x_i and $f \downarrow$ for other x_j .
- Fact: $f \uparrow \text{ in } x_i \text{ if } \frac{\partial f}{\partial x_i} \ge 0.$
- Checking monotonicity: check that the range $[\underline{r}_i, \overline{r}_i]$ of $\frac{\partial f}{\partial x_i}$ on \mathbf{x}_i has $\underline{r}_i \geq 0$.
- Differentiation: by Automatic Differentiation (AD) tools.
- Estimating ranges of $\frac{\partial f}{\partial r_i}$: straightforward interval comp.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting. Home Page Title Page **>>** Page 29 of 80 Go Back Full Screen Close Quit

29. Monotonicity: Example

• *Idea*: if the range $[\underline{r}_i, \overline{r}_i]$ of each $\frac{\partial f}{\partial x_i}$ on \mathbf{x}_i has $\underline{r}_i \geq 0$, then

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)=[f(\underline{x}_1,\ldots,\underline{x}_n),f(\overline{x}_1,\ldots,\overline{x}_n)].$$

- Example: $f(x) = (x-2) \cdot (x+2)$, $\mathbf{x} = [1, 2]$.
- Case n = 1: if the range $[\underline{r}, \overline{r}]$ of $\frac{df}{dx}$ on \mathbf{x} has $\underline{r} \geq 0$, then

$$f(\mathbf{x}) = [f(\underline{x}), f(\overline{x})].$$

- $AD: \frac{df}{dx} = 1 \cdot (x+2) + (x-2) \cdot 1 = 2x.$
- Checking: $[\underline{r}, \overline{r}] = [2, 4]$, with $2 \ge 0$.
- Result: f([1,2]) = [f(1), f(2)] = [-3,0].
- Comparison: this is the exact range.

General Problem of...

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . .

Home Page

Title Page

Page 30 of 80

Go Back

Full Screen

Close

30. Exercise 6: Task

Use monotonicity to compute the range of the function $f(x) = (x-1) \cdot (x+1)$ for $x \in [0,2]$.

31. Non-Monotonic Example

- Example: $f(x) = x \cdot (1 x), x \in [0, 1].$
- How will the computer compute it?
 - \bullet $r_1 := 1 x;$
 - \bullet $r_2 := x \cdot r_1$.
- Straightforward interval computations:
 - $\mathbf{r}_1 := [1,1] [0,1] = [0,1];$
 - $\mathbf{r}_2 := [0,1] \cdot [0,1] = [0,1].$
- Actual range: min, max of f at \underline{x} , \overline{x} , or when $\frac{df}{dx} = 0$.
- Here, $\frac{df}{dx} = 1 2x = 0$ for x = 0.5, thus we:
 - compute f(0) = 0, f(0.5) = 0.25, and f(1) = 0, so
 - $\underline{y} = \min(0, 0.25, 0) = 0, \, \overline{y} = \max(0, 0.25, 0) = 0.25.$
- Resulting range: $f(\mathbf{x}) = [0, 0.25]$.

General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design
Combining Interval...

Case Study: . . .

Case Study: Detecting . . .

Home Page

Title Page

•

Page 32 of 80

Go Back

Full Screen

Close

32. Second Idea: Centered Form

• Main idea: Intermediate Value Theorem

$$f(x_1, \dots, x_n) = f(\widetilde{x}_1, \dots, \widetilde{x}_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\chi) \cdot (x_i - \widetilde{x}_i)$$

for some $\chi_i \in \mathbf{x}_i$.

• Corollary: $f(x_1, \ldots, x_n) \in \mathbf{Y}$, where

$$\mathbf{Y} = \widetilde{y} + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{x}_1, \dots, \mathbf{x}_n) \cdot [-\Delta_i, \Delta_i].$$

- Differentiation: by Automatic Differentiation (AD) tools.
- Estimating the ranges of derivatives:
 - if appropriate, by monotonicity, or
 - by straightforward interval computations, or
 - by centered form (more time but more accurate).

General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval...

Case Study: . . .

Case Study: Detecting . . .

Home Page

Title Page

Go Back

Full Screen

Close

33. Centered Form: Example

• General formula:

$$\mathbf{Y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_1, \dots, \mathbf{x}_n) \cdot [-\Delta_i, \Delta_i].$$

- Example: $f(x) = x \cdot (1 x), \mathbf{x} = [0, 1].$
- Here, $\mathbf{x} = [\widetilde{x} \Delta, \widetilde{x} + \Delta]$, with $\widetilde{x} = 0.5$ and $\Delta = 0.5$.
- Case n = 1: $\mathbf{Y} = f(\widetilde{x}) + \frac{df}{dx}(\mathbf{x}) \cdot [-\Delta, \Delta]$.
- $AD: \frac{df}{dx} = 1 \cdot (1-x) + x \cdot (-1) = 1-2x.$
- Estimation: we have $\frac{df}{dx}(\mathbf{x}) = 1 2 \cdot [0, 1] = [-1, 1].$
- Result: $\mathbf{Y} = 0.5 \cdot (1 0.5) + [-1, 1] \cdot [-0.5, 0.5] = 0.25 + [-0.5, 0.5] = [-0.25, 0.75].$
- Comparison: actual range [0, 0.25], straightforward [0, 1].

General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Case Study: . . .

Case Study: Detecting .

Home Page

Title Page

>>

Page 34 of 80

Go Back

Full Screen

Close

34. Exercise 7: Task

Use centered form to compute the range of

$$f(x) = (x-1) \cdot (x+1)$$

for $x \in [-2, 4]$.

35. Third Idea: Bisection

• Known: accuracy $O(\Delta_i^2)$ of first order formula

$$f(x_1,\ldots,x_n)=f(\widetilde{x}_1,\ldots,\widetilde{x}_n)+\sum_{i=1}^n\frac{\partial f}{\partial x_i}(\chi)\cdot(x_i-\widetilde{x}_i).$$

- *Idea*: if the intervals are too wide, we:
 - split one of them in half $(\Delta_i^2 \to \Delta_i^2/4)$; and
 - take the union of the resulting ranges.
- Example: $f(x) = x \cdot (1 x)$, where $x \in \mathbf{x} = [0, 1]$.
- Split: take $\mathbf{x}' = [0, 0.5]$ and $\mathbf{x}'' = [0.5, 1]$.
- 1st range: $1 2 \cdot \mathbf{x} = 1 2 \cdot [0, 0.5] = [0, 1]$, so $f \uparrow$ and $f(\mathbf{x}') = [f(0), f(0.5)] = [0, 0.25]$.
- 2nd range: $1 2 \cdot \mathbf{x} = 1 2 \cdot [0.5, 1] = [-1, 0]$, so $f \downarrow$ and $f(\mathbf{x''}) = [f(1), f(0.5)] = [0, 0.25]$.
- Result: $f(\mathbf{x}') \cup f(\mathbf{x}'') = [0, 0.25] \text{exact.}$

General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Case Study: . . .

Case Study: Detecting . .

Home Page

Title Page

Page 36 of 80

Go Back

Full Screen

Close

36. Exercise 8: Task

Use bisection – and, if needed, monotonicity and centered form – to compute the range of $f(x) = (x-1) \cdot (x+1)$ for $x \in [-2, 4]$.

37. Alternative Approach: Affine Arithmetic

- So far: we compute the range of $x \cdot (1-x)$ by multiplying ranges of x and 1-x.
- We ignore: that both factors depend on x and are, thus, dependent.
- *Idea*: for each intermediate result a, keep an explicit dependence on $\Delta x_i = \tilde{x}_i x_i$ (at least its linear terms).
- *Implementation:*

$$a = a_0 + \sum_{i=1}^{n} a_i \cdot \Delta x_i + [\underline{a}, \overline{a}].$$

• We start: with $x_i = \widetilde{x}_i - \Delta x_i$, i.e.,

$$\widetilde{x}_i + 0 \cdot \Delta x_1 + \ldots + 0 \cdot \Delta x_{i-1} + (-1) \cdot \Delta x_i + 0 \cdot \Delta x_{i+1} + \ldots + 0 \cdot \Delta x_n + [0, 0].$$

• Description: $a_0 = \widetilde{x}_i$, $a_i = -1$, $a_j = 0$ for $j \neq i$, and $[\underline{a}, \overline{a}] = [0, 0]$.

General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval...

Case Study: . . .

Case Study: Detecting..

Home Page

Title Page

Page 38 of 80

Go Back

Full Screen

Close

38. Affine Arithmetic: Operations

- Representation: $a = a_0 + \sum_{i=1}^n a_i \cdot \Delta x_i + [\underline{a}, \overline{a}].$
- Input: $a = a_0 + \sum_{i=1}^n a_i \cdot \Delta x_i + \mathbf{a}$ and $b = b_0 + \sum_{i=1}^n b_i \cdot \Delta x_i + \mathbf{b}$.
- Operations: $c = a \otimes b$.
- Addition: $c_0 = a_0 + b_0$, $c_i = a_i + b_i$, $\mathbf{c} = \mathbf{a} + \mathbf{b}$.
- Subtraction: $c_0 = a_0 b_0$, $c_i = a_i b_i$, $\mathbf{c} = \mathbf{a} \mathbf{b}$.
- Multiplication: $c_0 = a_0 \cdot b_0$, $c_i = a_0 \cdot b_i + b_0 \cdot a_i$, $\mathbf{c} = a_0 \cdot \mathbf{b} + b_0 \cdot \mathbf{a} + \sum_{i \neq j} a_i \cdot b_j \cdot [-\Delta_i, \Delta_i] \cdot [-\Delta_j, \Delta_j] +$

$$\sum_{i} a_i \cdot b_i \cdot [-\Delta_i, \Delta_i]^2 +$$

$$\left(\sum_{i} a_{i} \cdot [-\Delta_{i}, \Delta_{i}]\right) \cdot \mathbf{b} + \left(\sum_{i} b_{i} \cdot [-\Delta_{i}, \Delta_{i}]\right) \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{b}.$$

General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval...

Case Study: . . .

Case Study: Detecting..

Home Page

Title Page

Page 39 of 80

Go Back

Full Screen

Close

39. Affine Arithmetic: Example

- Example: $f(x) = x \cdot (1 x), x \in [0, 1].$
- Here, n = 1, $\tilde{x} = 0.5$, and $\Delta = 0.5$.
- How will the computer compute it?
 - $\bullet r_1 := 1 x;$
 - \bullet $r_2 := x \cdot r_1$.
- Affine arithmetic: we start with $x = 0.5 \Delta x + [0, 0]$;
 - $\mathbf{r}_1 := 1 (0.5 \Delta x) = 0.5 + \Delta x;$
 - $\mathbf{r}_2 := (0.5 \Delta x) \cdot (0.5 + \Delta x)$, i.e.,

$$\mathbf{r}_2 = 0.25 + 0 \cdot \Delta x - [-\Delta, \Delta]^2 = 0.25 + [-\Delta^2, 0].$$

- Resulting range: $\mathbf{y} = 0.25 + [-0.25, 0] = [0, 0.25].$
- Comparison: this is the exact range.

40. Exercise 9: Task

Use affine arithmetic to compute the range of

$$f(x) = (x-1) \cdot (x+1)$$

for $x \in [-2, 4]$.

41. Affine Arithmetic: Towards More Accurate Estimates

- In our simple example: we got the exact range.
- In general: range estimation is NP-hard.
- Meaning: a feasible (polynomial-time) algorithm will sometimes lead to excess width: $\mathbf{Y} \supset \mathbf{y}$.
- Conclusion: affine arithmetic may lead to excess width.
- Question: how to get more accurate estimates?
- First idea: bisection.
- Second idea (Taylor arithmetic):
 - affine arithmetic: $a = a_0 + \sum a_i \cdot \Delta x_i + \mathbf{a}$;
 - meaning: we keep linear terms in Δx_i ;
 - -idea: keep, e.g., quadratic terms

$$a = a_0 + \sum a_i \cdot \Delta x_i + \sum a_{ij} \cdot \Delta x_i \cdot \Delta x_j + \mathbf{a}.$$

42. Interval Computations vs. Affine Arithmetic: Comparative Analysis

- Objective: we want a method that computes a reasonable estimate for the range in reasonable time.
- Conclusion how to compare different methods:
 - how accurate are the estimates, and
 - how fast we can compute them.
- Accuracy: affine arithmetic leads to more accurate ranges.
- Computation time:
 - Interval arithmetic: for each intermediate result a, we compute two values: endpoints \underline{a} and \overline{a} of $[\underline{a}, \overline{a}]$.
 - Affine arithmetic: for each a, we compute n+3 values:

$$a_0 \quad a_1, \ldots, a_n \quad \underline{a}, \overline{a}.$$

• Conclusion: affine arithmetic is $\sim n$ times slower.

43. Solving Systems of Equations: Extending Known Algorithms to Situations with Interval Uncertainty

- We have: a system of equations $g_i(y_1, ..., y_n) = a_i$ with unknowns y_i ;
- We know: a_i with interval uncertainty: $a_i \in [\underline{a}_i, \overline{a}_i]$;
- We want: to find the corresponding ranges of y_j .
- First case: for exactly known a_i , we have an algorithm $y_j = f_j(a_1, \ldots, a_n)$ for solving the system.
- Example: system of linear equations.
- Solution: apply interval computations techniques to find the range $f_j([\underline{a}_1, \overline{a}_1], \dots, [\underline{a}_n, \overline{a}_n])$.
- Better solution: for specific equations, we often already know which ideas work best.
- Example: linear equations Ay = b; y is monotonic in b.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting . . Home Page Title Page **>>** Page 44 of 80 Go Back Full Screen Close Quit

44. Solving Systems of Equations When No Algorithm Is Known

- *Idea*:
 - parse each equation into elementary constraints,
 and
 - use interval computations to improve original ranges until we get a narrow range (= solution).
- First example: $x x^2 = 0.5$, $x \in [0, 1]$ (no solution).
- Parsing: $r_1 = x^2$, 0.5 (= r_2) = $x r_1$.
- Rules: from $r_1 = x^2$, we extract two rules:

(1)
$$x \to r_1 = x^2$$
; (2) $r_1 \to x = \sqrt{r_1}$;

from $0.5 = x - r_1$, we extract two more rules:

(3)
$$x \to r_1 = x - 0.5$$
; (4) $r_1 \to x = r_1 + 0.5$.

General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval...

Case Study: . . .

Case Study: Detecting . .

Home Page

Title Page

Page 45 of 80

Go Back

Full Screen

Close

45. Solving Systems of Equations When No Algorithm Is Known: Example

- (1) $r = x^2$; (2) $x = \sqrt{r}$; (3) r = x 0.5; (4) x = r + 0.5.
- We start with: $\mathbf{x} = [0, 1], \mathbf{r} = (-\infty, \infty).$
- (1) $\mathbf{r} = [0, 1]^2 = [0, 1]$, so $\mathbf{r}_{new} = (-\infty, \infty) \cap [0, 1] = [0, 1]$.
- (2) $\mathbf{x}_{\text{new}} = \sqrt{[0,1]} \cap [0,1] = [0,1]$ no change.
- (3) $\mathbf{r}_{new} = ([0,1]-0.5)\cap[0,1] = [-0.5,0.5]\cap[0,1] = [0,0.5].$
- (4) $\mathbf{x}_{\text{new}} = ([0, 0.5] + 0.5) \cap [0, 1] = [0.5, 1] \cap [0, 1] = [0.5, 1].$
- (1) $\mathbf{r}_{\text{new}} = [0.5, 1]^2 \cap [0, 0.5] = [0.25, 0.5].$
- (2) $\mathbf{x}_{\text{new}} = \sqrt{[0.25, 0.5]} \cap [0.5, 1] = [0.5, 0.71];$ round \underline{a} down \downarrow and \overline{a} up \uparrow , to guarantee enclosure.
- (3) $\mathbf{r}_{new} = ([0.5, 0.71] 0.5) \cap [0.25, 5] = [0, 0.21] \cap [0.25, 0.5],$ i.e., $\mathbf{r}_{new} = \emptyset$.
 - Conclusion: the original equation has no solutions.

General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval...

Case Study: . . .

Case Study: Detecting . . .

Home Page

Title Page

>>

Page 46 of 80

Go Back

Full Screen

Close

46. Solving Systems of Equations: 2nd Example

- Example: $x x^2 = 0, x \in [0, 1]$.
- Parsing: $r_1 = x^2$, $0 (= r_2) = x r_1$.
- Rules: (1) $r = x^2$; (2) $x = \sqrt{r}$; (3) r = x; (4) x = r.
- We start with: $\mathbf{x} = [0, 1], \mathbf{r} = (-\infty, \infty).$
- Problem: after Rule 1, we're stuck with $\mathbf{x} = \mathbf{r} = [0, 1]$.
- Solution: bisect $\mathbf{x} = [0, 1]$ into [0, 0.5] and [0.5, 1].
- For 1st subinterval:
 - Rule 1 leads to $\mathbf{r}_{\text{new}} = [0, 0.5]^2 \cap [0, 0.5] = [0, 0.25];$
 - Rule 4 leads to $\mathbf{x}_{new} = [0, 0.25];$
 - Rule 1 leads to $\mathbf{r}_{\text{new}} = [0, 0.25]^2 = [0, 0.0625];$
 - Rule 4 leads to $\mathbf{x}_{\text{new}} = [0, 0.0625]$; etc.
 - we converge to x = 0.
- For 2nd subinterval: we converge to x = 1.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting . . Home Page Title Page **>>** Page 47 of 80 Go Back Full Screen Close Quit

47. Exercise 10: Task

Use the above method to solve the system of equation

$$x + y = 1;$$

$$x - y = 0;$$

when $x \in [0, 0.8]$.

48. Optimization: Extending Known Algorithms to Situations with Interval Uncertainty

• *Problem:* find y_1, \ldots, y_m for which

$$g(y_1,\ldots,y_m,a_1,\ldots,a_m)\to \max.$$

- We know: a_i with interval uncertainty: $a_i \in [\underline{a}_i, \overline{a}_i]$;
- We want: to find the corresponding ranges of y_i .
- First case: for exactly known a_i , we have an algorithm $y_j = f_j(a_1, \ldots, a_n)$ for solving the optimization problem.
- Example: quadratic objective function g.
- Solution: apply interval computations techniques to find the range $f_j([\underline{a}_1, \overline{a}_1], \dots, [\underline{a}_n, \overline{a}_n])$.
- Better solution: for specific f, we often already know which ideas work best.

49. Optimization When No Algorithm Is Known

- *Idea*: divide the original box \mathbf{x} into subboxes \mathbf{b} .
- If $\max_{x \in \mathbf{b}} g(x) < g(x')$ for a known x', dismiss \mathbf{b} .
- Example: $g(x) = x \cdot (1 x), \mathbf{x} = [0, 1].$
- Divide into 10 (?) subboxes $\mathbf{b} = [0, 0.1], [0.1, 0.2], \dots$
- Find g(b) for each **b**; the largest is $0.45 \cdot 0.55 = 0.2475$.
- Compute $G(\mathbf{b}) = g(\widetilde{b}) + (1 2 \cdot \mathbf{b}) \cdot [-\Delta, \Delta].$
- Dismiss subboxes for which $\overline{Y} < 0.2475$.
- Example: for [0.2, 0.3], we have $0.25 \cdot (1 0.25) + (1 2 \cdot [0.2, 0.3]) \cdot [-0.05, 0.05].$
- Here $\overline{Y} = 0.2175 < 0.2475$, so we dismiss [0.2, 0.3].
- Result: keep only boxes $\subseteq [0.3, 0.7]$.
- Further subdivision: get us closer and closer to x = 0.5.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting. Home Page Title Page **>>** Page 50 of 80 Go Back Full Screen Close Quit

50. Exercise 11: Task

Use this algorithm to find the minimum of the function $y = x^2$ on [-1, 1]. Divide into subboxes of width 0.4.

51. Case Study: Chip Design

- Chip design: one of the main objectives is to decrease the clock cycle.
- Current approach: uses worst-case (interval) techniques.
- *Problem:* the probability of the worst-case values is usually very small.
- Result: estimates are over-conservative unnecessary over-design and under-performance of circuits.
- Difficulty: we only have partial information about the corresponding probability distributions.
- Objective: produce estimates valid for all distributions which are consistent with this information.
- What we do: provide such estimates for the clock time.

52. Estimating Clock Cycle: a Practical Problem

- Objective: estimate the clock cycle on the design stage.
- The clock cycle of a chip is constrained by the maximum path delay over all the circuit paths

$$D \stackrel{\text{def}}{=} \max(D_1, \dots, D_N).$$

- The path delay D_i along the *i*-th path is the sum of the delays corresponding to the gates and wires along this path.
- Each of these delays, in turn, depends on several factors such as:
 - the variation caused by the current design practices,
 - environmental design characteristics (e.g., variations in temperature and in supply voltage), etc.

53. Traditional (Interval) Approach to Estimating the Clock Cycle

- Traditional approach: assume that each factor takes the worst possible value.
- Result: time delay when all the factors are at their worst.
- Problem:
 - different factors are usually independent;
 - combination of worst cases is improbable.
- Computational result: current estimates are 30% above the observed clock time.
- Practical result: the clock time is set too high chips are over-designed and under-performing.

54. Robust Statistical Methods Are Needed

- *Ideal case:* we know probability distributions.
- Solution: Monte-Carlo simulations.
- In practice: we only have partial information about the distributions of some of the parameters; usually:
 - the mean, and
 - some characteristic of the deviation from the mean
 - e.g., the interval that is guaranteed to contain possible values of this parameter.
- Possible approach: Monte-Carlo with several possible distributions.
- *Problem:* no guarantee that the result is a valid bound for all possible distributions.
- Objective: provide robust bounds, i.e., bounds that work for all possible distributions.

55. Towards a Mathematical Formulation of the Problem

- General case: each gate delay d depends on the difference x_1, \ldots, x_n between the actual and the nominal values of the parameters.
- Main assumption: these differences are usually small.
- Each path delay D_i is the sum of gate delays.
- Conclusion: D_i is a linear function: $D_i = a_i + \sum_{j=1}^n a_{ij} \cdot x_j$ for some a_i and a_{ij} .
- The desired maximum delay $D = \max_{i} D_{i}$ has the form

$$D = F(x_1, \dots, x_n) \stackrel{\text{def}}{=} \max_i \left(a_i + \sum_{j=1}^n a_{ij} \cdot x_j \right).$$

56. Towards a Mathematical Formulation of the Problem (cont-d)

• *Known:* maxima of linear function are exactly convex functions:

$$F(\alpha \cdot x + (1 - \alpha) \cdot y) \le \alpha \cdot F(x) + (1 - \alpha) \cdot F(y)$$

for all x, y and for all $\alpha \in [0, 1]$;

- We know: factors x_i are independent;
 - we know distribution of some of the factors;
 - for others, we know ranges $[\underline{x}_j, \overline{x}_j]$ and means E_j .
- Given: a convex function $F \geq 0$ and a number $\varepsilon > 0$.
- Objective: find the smallest y_0 s.t. for all possible distributions, we have $y \leq y_0$ with the probability $\geq 1-\varepsilon$.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting. Home Page Title Page **>>** Page 57 of 80 Go Back Full Screen Close Quit

57. Additional Property: Dependency is Non-Degenerate

- Fact: sometimes, we learn additional information about one of the factors x_i .
- Example: we learn that x_j actually belongs to a proper subinterval of the original interval $[\underline{x}_i, \overline{x}_i]$.
- Consequence: the class \mathcal{P} of possible distributions is replaced with $\mathcal{P}' \subset \mathcal{P}$.
- Result: the new value y'_0 can only decrease: $y'_0 \leq y_0$.
- Fact: if x_j is irrelevant for y, then $y'_0 = y_0$.
- Assumption: irrelevant variables been weeded out.
- Formalization: if we narrow down one of the intervals $[\underline{x}_j, \overline{x}_j]$, the resulting value y_0 decreases: $y'_0 < y_0$.

58. Formulation of the Problem

GIVEN: \bullet n, $k \le n$, $\varepsilon > 0$;

• a convex function $y = F(x_1, \ldots, x_n) \ge 0$;

• n-k cdfs $F_i(x)$, $k+1 \le j \le n$;

• intervals $\mathbf{x}_1, \dots, \mathbf{x}_k$, values E_1, \dots, E_k ,

TAKE: all joint probability distributions on \mathbb{R}^n for which:

• all x_i are independent,

• $x_j \in \mathbf{x}_j$, $E[x_j] = E_j$ for $j \le k$, and

• x_j have distribution $F_j(x)$ for j > k.

FIND: the smallest y_0 s.t. for all such distributions, $F(x_1, \ldots, x_n) \leq y_0$ with probability $\geq 1 - \varepsilon$.

WHEN: the problem is non-degenerate – if we narrow down one of the intervals \mathbf{x}_j , y_0 decreases.

General Problem of Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting. Home Page Title Page **>>** Page 59 of 80 Go Back Full Screen Close

59. Main Result and How We Can Use It

- Result: y_0 is attained when for each j from 1 to k,
 - $x_j = \underline{x}_j$ with probability $\underline{p}_j \stackrel{\text{def}}{=} \frac{\overline{x}_j E_j}{\overline{x}_j \underline{x}_j}$, and
 - $x_j = \overline{x}_j$ with probability $\overline{p}_j \stackrel{\text{def}}{=} \frac{E_j \underline{x}_j}{\overline{x}_j \underline{x}_j}$.
- Algorithm:
 - simulate these distributions for x_j , j < k;
 - simulate known distributions for j > k;
 - use the simulated values $x_i^{(s)}$ to find

$$y^{(s)} = F(x_1^{(s)}, \dots, x_n^{(s)});$$

- sort N values $y^{(s)}$: $y_{(1)} \le y_{(2)} \le \ldots \le y_{(N_i)}$;
- take $y_{(N_i\cdot(1-\varepsilon))}$ as y_0 .

General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval . . .

Case Study: . . .

Case Study: Detecting . .

Home Page

Title Page

Page 60 of 80

Go Back

Full Screen

Close

60. Comment about Monte-Carlo Techniques

- Traditional belief: Monte-Carlo methods are inferior to analytical:
 - they are approximate;
 - they require large computation time;
 - simulations for *several* distributions, may mis-calculate the (desired) maximum over *all* distributions.
- We proved: the value corresponding to the selected distributions indeed provide the desired maximum value y_0 .
- General comment:
 - justified Monte-Carlo methods often lead to faster computations than analytical techniques;
 - example: multi-D integration where Monte-Carlo methods were originally invented.

61. Comment about Non-Linear Terms

- Reminder: in the above formula $D_i = a_i + \sum_{j=1}^{n} a_{ij} \cdot x_j$, we ignored quadratic and higher order terms in the dependence of each path time D_i on parameters x_j .
- In reality: we may need to take into account some quadratic terms.
- Idea behind possible solution: it is known that the max $D = \max_{i} D_{i}$ of convex functions D_{i} is convex.
- Condition when this idea works: when each dependence $D_i(x_1, \ldots, x_k, \ldots)$ is still convex.
- Solution: in this case,
 - the function function D is still convex,
 - hence, our algorithm will work.

62. Conclusions

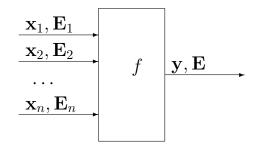
- Problem of chip design: decrease the clock cycle.
- How this problem is solved now: by using worst-case (interval) techniques.
- Limitations of this solution: the probability of the worst-case values is usually very small.
- Consequence: estimates are over-conservative, hence over-design and under-performance of circuits.
- Objective: find the clock time as y_0 s.t. for the actual delay y, we have $\text{Prob}(y > y_0) \le \varepsilon$ for given $\varepsilon > 0$.
- Difficulty: we only have partial information about the corresponding distributions.
- What we have described: a general technique that allows us, in particular, to compute y_0 .

63. Combining Interval and Probabilistic Uncertainty: General Case

- *Problem:* there are many ways to represent a probability distribution.
- *Idea:* look for an objective.
- Objective: make decisions $E_x[u(x,a)] \to \max_a$.
- Case 1: smooth u(x).
- Analysis: we have $u(x) = u(x_0) + (x x_0) \cdot u'(x_0) + \dots$
- Conclusion: we must know moments to estimate E[u].
- Case of uncertainty: interval bounds on moments.
- Case 2: threshold-type u(x).
- Conclusion: we need cdf $F(x) = \text{Prob}(\xi \le x)$.
- Case of uncertainty: p-box $[\underline{F}(x), \overline{F}(x)]$.

64. Extension of Interval Arithmetic to Probabilistic Case: Successes

- General solution: parse to elementary operations +, -, \cdot , 1/x, max, min.
- Explicit formulas for arithmetic operations known for intervals, for p-boxes $\mathbf{F}(x) = [\underline{F}(x), \overline{F}(x)]$, for intervals + 1st moments $E_i \stackrel{\text{def}}{=} E[x_i]$:



65. Successes (cont-d)

- Easy cases: +, -, product of independent x_i .
- Example of a non-trivial case: multiplication $y = x_1 \cdot x_2$, when we have no information about the correlation:
 - $\underline{E} = \max(p_1 + p_2 1, 0) \cdot \overline{x}_1 \cdot \overline{x}_2 + \min(p_1, 1 p_2) \cdot \overline{x}_1 \cdot \underline{x}_2 + \min(1 p_1, p_2) \cdot \underline{x}_1 \cdot \overline{x}_2 + \max(1 p_1 p_2, 0) \cdot \underline{x}_1 \cdot \underline{x}_2;$
 - $\overline{E} = \min(p_1, p_2) \cdot \overline{x}_1 \cdot \overline{x}_2 + \max(p_1 p_2, 0) \cdot \overline{x}_1 \cdot \underline{x}_2 + \max(p_2 p_1, 0) \cdot \underline{x}_1 \cdot \overline{x}_2 + \min(1 p_1, 1 p_2) \cdot \underline{x}_1 \cdot \underline{x}_2,$

where $p_i \stackrel{\text{def}}{=} (E_i - \underline{x}_i)/(\overline{x}_i - \underline{x}_i)$.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting Home Page Title Page **>>** Page 66 of 80 Go Back Full Screen Close

66. Example

- Given: $[\underline{x}_1, \overline{x}_1] = [\underline{x}_1, \overline{x}_2] = [-1, 1], E_1 = E_2 = 0.$
- Find: the range of $E \stackrel{\text{def}}{=} E[x_1 \cdot x_2]$; solution:

$$p_1 = \frac{E_1 - \underline{x}_1}{\overline{x}_1 - x_1} = \frac{0 - (-1)}{1 - (-1)} = \frac{1}{2} = 0.5,$$

• Similarly, $p_2 = 0.5$, so:

$$\underline{E} = \max(0.5 + 0.5 - 1, 0) \cdot 1 \cdot 1 + \min(0.5, 1 - 0.5) \cdot 1 \cdot (-1) + \min(1 - 0.5, 0.5) \cdot (-1) \cdot 1 + \max(1 - 0.5 - 0.5, 0) \cdot (-1) \cdot (-1) = -0.5 - 0.5 = -1;$$

$$\overline{E} = \min(0.5, 0.5) \cdot 1 \cdot 1 + \max(0.5 - 0.5, 0) \cdot 1 \cdot (-1) + \max(0.5 - 0.5, 0) \cdot (-1) \cdot 1 + \min(1 - 0.5, 1 - 0.5) \cdot (-1) \cdot (-1) = 0.5 + 0.5 = 1.$$

• Solution: the range is $[\underline{E}, E] = [-1, 1]$.

General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval...

Case Study: . . .

Case Study: Detecting . .

Home Page

Title Page

(4 **)**

Page 67 of 80

Go Back

Full Screen

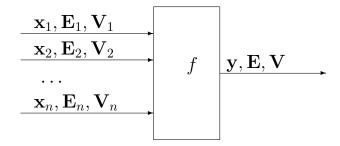
Close

67. Exercise 12: Task

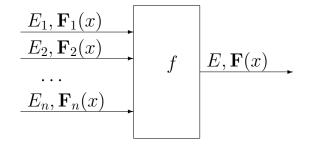
- Given: $[\underline{x}_1, \overline{x}_1] = [\underline{x}_1, \overline{x}_2] = [-1, 1], E_1 = E_2 = 0.8.$
- Find: the range of $E \stackrel{\text{def}}{=} E[x_1 \cdot x_2]$.

68. Challenges

• intervals + 2nd moments:



 \bullet moments + p-boxes; e.g.:



69. Case Study: Bioinformatics

- Practical problem: find genetic difference between cancer cells and healthy cells.
- *Ideal case:* we directly measure concentration c of the gene in cancer cells and h in healthy cells.
- In reality: difficult to separate.
- Solution: we measure $y_i \approx x_i \cdot c + (1 x_i) \cdot h$, where x_i is the percentage of cancer cells in *i*-th sample.
- Equivalent form: $a \cdot x_i + h \approx y_i$, where $a \stackrel{\text{def}}{=} c h$.

70. Case Study: Bioinformatics (cont-d)

• If we know x_i exactly: Least Squares Method $\sum_{i=1}^{n} (a \cdot x_i + h - y_i)^2 \to \min_{a,h}, \text{ hence } a = \frac{C(x,y)}{V(x)} \text{ and}$

$$h = E(y) - a \cdot E(x)$$
, where $E(x) = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$,

$$V(x) = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - E(x))^2,$$

$$C(x,y) = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - E(x)) \cdot (y_i - E(y)).$$

- Interval uncertainty: experts manually count x_i , and only provide interval bounds \mathbf{x}_i , e.g., $x_i \in [0.7, 0.8]$.
- Problem: find the range of a and h corresponding to all possible values $x_i \in [\underline{x}_i, \overline{x}_i]$.

General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval...

Case Study: . . .

Case Study: Detecting . .

Home Page

Title Page

>>

Go Back

Full Screen

Close

71. General Problem

- General problem:
 - we know intervals $\mathbf{x}_1 = [\underline{x}_1, \overline{x}_1], \ldots, \mathbf{x}_n = [\underline{x}_n, \overline{x}_n],$
 - compute the range of $E(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$, population

variance
$$V = \frac{1}{n} \sum_{i=1}^{n} (x_i - E(x))^2$$
, etc.

- Difficulty: NP-hard even for variance.
- Known:
 - efficient algorithms for \underline{V} ,
 - efficient algorithms for \overline{V} and C(x, y) for reasonable situations.
- Bioinformatics case: find intervals for C(x, y) and for V(x) and divide.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting. Home Page Title Page **>>**

Page 72 of 80

Go Back

Full Screen

Close

72. Case Study: Detecting Outliers

- In many application areas, it is important to detect outliers, i.e., unusual, abnormal values.
- In *medicine*, unusual values may indicate disease.
- In *geophysics*, abnormal values may indicate a mineral deposit (or an erroneous measurement result).
- In *structural integrity* testing, abnormal values may indicate faults in a structure.
- Traditional engineering approach: a new measurement result x is classified as an outlier if $x \notin [L, U]$, where

$$L \stackrel{\text{def}}{=} E - k_0 \cdot \sigma, \quad U \stackrel{\text{def}}{=} E + k_0 \cdot \sigma,$$

and $k_0 > 1$ is pre-selected.

• Comment: most frequently, $k_0 = 2, 3, \text{ or } 6.$

73. Outlier Detection Under Interval Uncertainty: A Problem

- In some practical situations, we only have intervals $\mathbf{x}_i = [\underline{x}_i, \overline{x}_i].$
- Different $x_i \in \mathbf{x}_i$ lead to different intervals [L, U].
- A possible outlier: outside some k_0 -sigma interval.
- Example: structural integrity not to miss a fault.
- A guaranteed outlier: outside all k_0 -sigma intervals.
- Example: before a surgery, we want to make sure that there is a micro-calcification.
- A value x is a possible outlier if $x \notin [\overline{L}, \underline{U}]$.
- A value x is a guaranteed outlier if $x \notin [\underline{L}, \overline{U}]$.
- Conclusion: to detect outliers, we must know the ranges of $L = E k_0 \cdot \sigma$ and $U = E + k_0 \cdot \sigma$.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting. Home Page Title Page Page 74 of 80 Go Back Full Screen Close Quit

74. Outlier Detection Under Interval Uncertainty: A Solution

- We need: to detect outliers, we must compute the ranges of $L = E k_0 \cdot \sigma$ and $U = E + k_0 \cdot \sigma$.
- We know: how to compute the ranges **E** and $[\underline{\sigma}, \overline{\sigma}]$ for E and σ .
- Possibility: use interval computations to conclude that $L \in \mathbf{E} k_0 \cdot [\underline{\sigma}, \overline{\sigma}]$ and $L \in \mathbf{E} + k_0 \cdot [\underline{\sigma}, \overline{\sigma}]$.
- Problem: the resulting intervals for L and U are wider than the actual ranges.
- Reason: E and σ use the same inputs x_1, \ldots, x_n and are hence not independent from each other.
- Practical consequence: we miss some outliers.
- Desirable: compute exact ranges for L and U.
- Application: detecting outliers in gravity measurements.

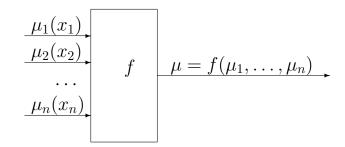
General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting . . Home Page Title Page **>>** Page 75 of 80 Go Back Full Screen Close Quit

75. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
- DUE-0926721.

76. Fuzzy Computations: A Problem



- Given: an algorithm $y = f(x_1, ..., x_n)$ and n fuzzy numbers $\mu_i(x_i)$.
- Compute: $\mu(y) = \max_{x_1, \dots, x_n : f(x_1, \dots, x_n) = y} \min(\mu_1(x_1), \dots, \mu_n(x_n)).$
- Motivation: y is a possible value of $Y \leftrightarrow \exists x_1, \ldots, x_n$ s.t. each x_i is a possible value of X_i and $f(x_1, \ldots, x_n) = y$.
- Details: "and" is min, \exists ("or") is max, hence $\mu(y) = \max_{x_1,\dots,x_n} \min(\mu_1(x_1),\dots,\mu_n(x_n), t(f(x_1,\dots,x_n)=y)),$ where t(true) = 1 and t(false) = 0.

General Problem of . . .

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design
Combining Interval...

Case Study: . . .

Case Study: Detecting . .

Home Page

Title Page

Page 77 of 80

Go Back

Full Screen

Close

77. Fuzzy Computations: Reduction to Interval Computations

- Problem (reminder):
 - Given: an algorithm $y = f(x_1, ..., x_n)$ and n fuzzy numbers X_i described by membership functions $\mu_i(x_i)$.
 - Compute: $Y = f(X_1, ..., X_n)$, where Y is defined by Zadeh's extension principle:

$$\mu(y) = \max_{x_1,\dots,x_n:f(x_1,\dots,x_n)=y} \min(\mu_1(x_1),\dots,\mu_n(x_n)).$$

• *Idea*: represent each X_i by its α -cuts

$$X_i(\alpha) = \{x_i : \mu_i(x_i) \ge \alpha\}.$$

• Advantage: for continuous f, for every α , we have

$$Y(\alpha) = f(X_1(\alpha), \dots, X_n(\alpha)).$$

• Resulting algorithm: for $\alpha = 0, 0.1, 0.2, ..., 1$ apply interval computations techniques to compute $Y(\alpha)$.

General Problem of . . . Cauchy Deviates Method Interval Arithmetic: . . . Case Study: Chip Design Combining Interval... Case Study: . . . Case Study: Detecting. Home Page Title Page **>>** Page 78 of 80 Go Back Full Screen

Close

78. Proof of the Result about Chips

• Let us fix the optimal distributions for x_2, \ldots, x_n ; then,

$$Prob(D \le y_0) = \sum_{(x_1, ..., x_n) : D(x_1, ..., x_n) \le y_0} p_1(x_1) \cdot p_2(x_2) \cdot ...$$

- So, $\operatorname{Prob}(D \leq y_0) = \sum_{i=0}^{N} c_i \cdot q_i$, where $q_i \stackrel{\text{def}}{=} p_1(v_i)$.
- Restrictions: $q_i \geq 0$, $\sum_{i=0}^{N} q_i = 1$, and $\sum_{i=0}^{N} q_i \cdot v_i = E_1$.
- Thus, the worst-case distribution for x_1 is a solution to the following linear programming (LP) problem:

Minimize
$$\sum_{i=0}^{N} c_i \cdot q_i$$
 under the constraints $\sum_{i=0}^{N} q_i = 1$ and $\sum_{i=0}^{N} q_i \cdot v_i = E_1, q_i \ge 0, \quad i = 0, 1, 2, \dots, N.$

General Problem of...

Cauchy Deviates Method

Interval Arithmetic: . . .

Case Study: Chip Design

Combining Interval...

Case Study: . . .

Case Study: Detecting . .

Home Page

Title Page

>>

Page 79 of 80

Go Back

Full Screen

Close

79. Proof of the Result about Chips (cont-d)

- Minimize: $\sum_{i=0}^{N} c_i \cdot q_i$ under the constraints $\sum_{i=0}^{N} q_i = 1$ and $\sum_{i=0}^{N} q_i \cdot v_i = E_1, q_i \ge 0, \quad i = 0, 1, 2, \dots, N.$
- Known: in LP with N+1 unknowns q_0, q_1, \ldots, q_N , $\geq N+1$ constraints are equalities.
- In our case: we have 2 equalities, so at least N-1 constraints $q_i \geq 0$ are equalities.
- Hence, no more than 2 values $q_i = p_1(v_i)$ are non-0.
- If corresponding v or v' are in $(\underline{x}_1, \overline{x}_1)$, then for $[v, v'] \subset \mathbf{x}_1$ we get the same y_0 in contradiction to non-degeneracy.
- Thus, the worst-case distribution is located at \underline{x}_1 and \overline{x}_1 .
- The condition that the mean of x_1 is E_1 leads to the desired formulas for p_1 and \overline{p}_1 .

General Problem of...
Cauchy Deviates Method
Interval Arithmetic:...
Case Study: Chip Design
Combining Interval...
Case Study:...
Case Study: Detecting...

Home Page

Title Page

Page 80 of 80

Go Back

Full Screen

Close