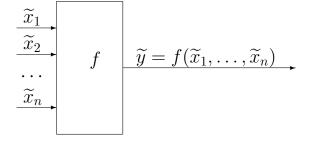
From Gauging Accuracy of
Quantity Estimates
to Gauging Accuracy and Resolution
of Field Measurements:
A Broad Prospective
on Fuzzy Transforms

Irina Perfilieva¹ and Vladik Kreinovich²

¹Inst. for Research and Applications of Fuzzy Modeling University of Ostrava, Czech Republic ²Department of Computer Science University of Texas at El Paso El Paso, Texas 79968, USA vladik@utep.edu

General Problem of Data Processing under Uncertainty

- Indirect measurements: way to measure y that are are difficult (or even impossible) to measure directly.
- Idea: $y = f(x_1, \ldots, x_n)$



• Problem: measurements are never 100% accurate: $\tilde{x}_i \neq$ $x_i \ (\Delta x_i \neq 0)$ hence

$$\widetilde{y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n) \neq y = f(x_1, \dots, x_n).$$

What are bounds on $\Delta y \stackrel{\text{def}}{=} \widetilde{y} - y$?

Situations in Which . . .

Situations With . . .

Outline

Situations in Which . . .

What If a Model Is

Situations in Which . . . Example of Asymmetry

Situations with No...

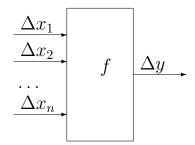
Towards Optimal . . .

Towards Optimal . . .

Acknowledgments Title Page

Full Screen

2. Probabilistic and Interval Uncertainty



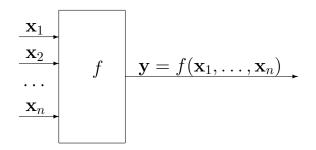
- Traditional approach: we know probability distribution for Δx_i (usually Gaussian).
- Where it comes from: calibration using standard MI.
- *Problem:* calibration is not possible in fundamental science like cosmology.
- Natural solution: assume upper bounds Δ_i on $|\Delta x_i|$ hence

$$x_i \in [\widetilde{x}_i - \Delta_i, \widetilde{x}_i + \Delta_i].$$

Outline Situations in Which . . . Situations With . . . Situations in Which . . . What If a Model Is Situations in Which ... Example of Asymmetry Situations with No... Towards Optimal . . . Towards Optimal . . . Acknowledgments Title Page Page 3 of 14 Go Back

Full Screen

3. **Interval Computations: A Problem**



- Given: an algorithm $y = f(x_1, \dots, x_n)$ and n intervals $\mathbf{x}_i = [x_i, \overline{x}_i].$
- Compute: the corresponding range of y: $[y,\overline{y}] = \{f(x_1,\ldots,x_n) \mid x_1 \in [\underline{x}_1,\overline{x}_1],\ldots,x_n \in [\underline{x}_n,\overline{x}_n]\}.$
- Fact: NP-hard even for quadratic f.
- Challenge: when are feasible algorithm possible?
- Challenge: when computing $\mathbf{y} = [y, \overline{y}]$ is not feasible, find a good approximation $Y \supseteq y$.

Outline

Situations in Which . . .

Situations With . . .

Situations in Which . . .

What If a Model Is... Situations in Which . . .

Example of Asymmetry

Situations with No...

Towards Optimal . . . Towards Optimal . . .

Acknowledgments

Title Page

Go Back

Full Screen

4. In Practice, the Situation is Often More Complex

- Dynamics: we measure the values v(t) of a quantity v at a certain moment of time t.
- Spatial dependence: we measure the value v(x,t) at a certain location x.
- Geophysical example: we are interested in the values of the density at different locations and at different depth.
- Traditional: uncertainty in the measured value, $\tilde{v} \approx v$.
- New: uncertainty in location x, $\tilde{x} \approx x$.
- Additional uncertainty: the sensor picks up the "average" value of v at locations close to \widetilde{x} .
- Question: how to describe and process the new uncertainty (resolution)?

Outline Situations in Which . . . Situations With . . . Situations in Which . . . What If a Model Is Situations in Which ... Example of Asymmetry Situations with No... Towards Optimal . . . Towards Optimal . . . Acknowledgments Title Page **>>** Page 5 of 14 Go Back Full Screen Close

5. Outline

- Question (reminder): how to describe and process uncertainty both
 - in the measured value \widetilde{v} and
 - in the spatial resolution \widetilde{x} ?
- Natural idea: the answer depends on what we know about the spatial resolution.
- Possible situations:
 - we know exactly how the measured values \tilde{v}_i are related to v(x), i.e., $\tilde{v}_i = \int w_i(x) \cdot v(x) dx + \Delta v_i$;
 - we only know the upper bound δ on the location error $\tilde{x} x$ (this is similar to the interval case);
 - we do not even know δ .
- What we do: describe how to process all these types of uncertainty.

Outline Situations in Which . . . Situations With . . . Situations in Which . . . What If a Model Is Situations in Which ... Example of Asymmetry Situations with No... Towards Optimal . . . Towards Optimal . . . Acknowledgments Title Page **>>** Page 6 of 14 Go Back Full Screen Close

6. Situations in Which We Have Detailed Knowledge

- Fact: all our information about v(x) is contained in the measured values \tilde{v}_i .
- Linearity assumption: $\widetilde{v}_i = v_i + \Delta v_i$, where:
 - we have $v_i \stackrel{\text{def}}{=} \int w_i(x) \cdot v(x) dx$; and
 - $-\Delta v_i$ is the measurement error; e.g., $|\Delta v_i| \leq \Delta_i$.
- Comment: v_i can be viewed as the value of v(x) at a "fuzzy" point characterized by uncertainty $w_i(x)$.
- Description of the situation: we know the weights $w_i(x)$.
- Find: range $[y, \overline{y}]$ for $y \stackrel{\text{def}}{=} \int w(x) \cdot v(x) dx$.
- LP solution: minimize (maximize) $\int w(x) \cdot v(x) dx$ under the constraints

$$\underline{v}_i \stackrel{\text{def}}{=} \widetilde{v}_i - \Delta_i \le \int w_i(x) \cdot v(x) \, dx \le \overline{v}_i \stackrel{\text{def}}{=} \widetilde{v}_i + \Delta_i.$$

Situations in Which...

Outline

Situations With . . .

Situations in Which...

What If a Model Is...

Situations in Which...

Example of Asymmetry

Situations with No...

Towards Optimal...

Acknowledgments

Title Page

Towards Optimal . . .

Go Back

Full Screen

7. Situations With Detailed Knowledge (cont-d)

- Reminder: find the range of $\int w(x) \cdot v(x) dx$ when $\underline{v}_i \leq \int w_i(x) \cdot v(x) dx \leq \overline{v}_i$.
- General case: when no bounds on v(x), bounds are infinite unless w(x) is a linear combination of $w_i(x)$.
- In practice (e.g., in geophysics): $v(x) \ge 0$.
- Similar: imprecise probabilities (Kuznetsov, Walley).
- Solution: dual LP problem provides guaranteed bounds

$$\underline{v} = \sup \left\{ \sum y_i \cdot \underline{v}_i : \sum y_i \cdot w_i(x) \le w(x) \right\};$$

$$\overline{v} = \inf \left\{ \sum y_i \cdot \overline{v}_i : w(x) \le \sum y_i \cdot w_i(x) \right\}.$$

- Easier than in IP: $w_i(x)$ are localized, and we often have ≤ 2 non-zero $w_i(x)$ at each x.
- Piece-wise linear $w_i(x)$ and w(x) sufficient to check inequality at endpoints.

Outline Situations in Which . . . Situations With . . . Situations in Which . . . What If a Model Is... Situations in Which ... Example of Asymmetry Situations with No... Towards Optimal . . . Towards Optimal . . . Acknowledgments Title Page **>>** Page 8 of 14 Go Back Full Screen Close

Situations in Which We Only Know Upper Bounds

- Situation: we only know;
 - the upper bound Δ on the measurement inaccuracy $\Delta v \stackrel{\text{def}}{=} \widetilde{v} - v$: $|\Delta v| \leq \Delta$, and
 - the upper bound δ on the location error $\Delta x \stackrel{\text{def}}{=} \widetilde{x} - x$: $|\Delta v| < \delta$.
- Consequence: the measured value \tilde{v} is Δ -close to a convex combination of values v(x) for x s.t. $||x - \widetilde{x}|| < \Delta x$.
- Conclusion: $v_{\delta}(\widetilde{x}) \Delta \leq \widetilde{v} \leq \overline{v}_{\delta}(\widetilde{x}) + \Delta$, where:
 - $v_{\delta}(\widetilde{x}) \stackrel{\text{def}}{=} \inf\{v(x) : ||x \widetilde{x}|| \leq \delta\}, \text{ and }$
 - $\overline{v}_{\delta}(\widetilde{x}) \stackrel{\text{def}}{=} \sup\{v(x) : ||x \widetilde{x}|| \le \delta\}.$
- Fact: measurement errors are random.
- So: it makes sense to only consider essential ess inf and ess sup (i.e., inf and sup modulo measure 0 sets).

Outline

Situations in Which . . .

Situations With . . . Situations in Which . . .

What If a Model Is

Situations in Which . . .

Example of Asymmetry Situations with No...

Towards Optimal . . . Towards Optimal . . .

Acknowledgments

Title Page

Go Back

Full Screen

What If a Model Is Only Known With Interval Uncertainty

• Reminder: we can tell when an observation $(\widetilde{v}, \widetilde{x})$ is consistent with a model v(x):

$$\underline{v}_{\delta}(\widetilde{x}) - \Delta \leq \widetilde{v} \leq \overline{v}_{\delta}(\widetilde{x}) + \Delta.$$

- Fact: in real life, we rarely have an exact model v(x).
- Usually: we have bounds on v(x), i.e., an intervalvalued model $\mathbf{v}(x) = [v^-(x), v^+(x)].$
- Question: when is an observation $(\widetilde{v}, \widetilde{x})$ consistent with an interval-valued model?
- General answer: when the observation $(\widetilde{v}, \widetilde{x})$ is consistent with one of the models $v(x) \in \mathbf{v}(x)$.
- A checkable answer: an observation $(\widetilde{v}, \widetilde{x})$ is consistent with an interval-valued model $[v^{-}(x), v^{+}(x)]$ when

$$\underline{v}_{\delta}^{-}(\widetilde{x}) - \Delta \leq \widetilde{v} \leq \overline{v}_{\delta}^{+}(\widetilde{x}) + \Delta.$$

Situations in Which . . .

Situations With . . .

Outline

Situations in Which . . .

What If a Model Is Situations in Which ...

Example of Asymmetry

Situations with No... Towards Optimal . . .

Towards Optimal . . .

Acknowledgments Title Page

Go Back

Full Screen

Situations in Which We Only Know Upper Bounds (cont-d)

- Fact: the actual v(x) is often continuous.
- Case of continuous v(x): we can simplify the above criterion.

• Simplification: the set \widetilde{m} of all measurement results

 $(\widetilde{x},\widetilde{x})$ is consistent with the model v(x) iff $\forall (\widetilde{v}, \widetilde{x}) \in \widetilde{m} \,\exists (v(x), x) \in v \, ((\widetilde{v}, \widetilde{x}) \text{ is } (\Delta, \delta) \text{-close to } (v(x), x)),$

i.e., $|\widetilde{v} - v| < \Delta$ and $||x - \widetilde{x}|| < \delta$.

10.

- Hausdorff metric: $d_H(A, B) \leq \varepsilon$ means that:
- $\forall a \in A \,\exists b \in B \, (d(a,b) \leq \varepsilon) \text{ and } \forall b \in B \,\exists a \in A \, (d(a,b) \leq \varepsilon).$
 - Conclusion: we have an asymmetric version of Hausdorff metric ("quasi-metric").

Situations in Which . . . Situations With . . .

Outline

Situations in Which . . . What If a Model Is

Situations in Which ...

Example of Asymmetry Situations with No . . .

Towards Optimal . . .

Acknowledgments Title Page

Towards Optimal . . .

>>

Page 11 of 14

Go Back

Full Screen

Example of Asymmetry

- Case 1:
 - The actual field: v(0) = 1 and v(x) = 0 for $x \neq 0$;
 - Measurement results: all zeros, i.e., $\tilde{v} = 0$ for all \tilde{x} .
 - Conclusion: all the measurements are consistent with the model.
 - Reason: the value $\tilde{v} = 0$ for $\tilde{x} = 0$ is consistent with v(x) = 0 for $x = \delta$ s.t. $|\widetilde{x} - x| \leq \delta$.
- Case 2:
 - The actual field: all zeros, i.e., v(x) = 0 for all x.
 - Measurement results: $\tilde{v} = 1$ for $\tilde{x} = 0$, and $\tilde{v} = 0$ for all $\widetilde{x} \neq 0$.
 - Conclusion (for $\Delta < 1$): the measurement (1,0) is inconsistent with the model.
 - Reason: for all x which are δ -close to $\widetilde{x}=0$, we have v(x) = 0 hence we should have $|\widetilde{x} - v(x)| = |\widetilde{x}| \leq \Delta$.

Outline

Situations in Which . . .

Situations With . . . Situations in Which . . .

What If a Model Is

Situations in Which ...

Example of Asymmetry

Situations with No...

Towards Optimal . . .

Towards Optimal . . .

Acknowledgments

>>

Go Back

Full Screen

12. Situations with No Information about Location Accuracy

- Example: when we solve the seismic inverse problem to find the velocity distribution.
- Natural heuristic idea:
 - add a perturbation of size Δ_0 to the reconstructed field $\widetilde{v}(x)$;
 - simulate the new measurement results;
 - apply the same algorithm to the simulated results, and reconstruct the new field $\tilde{v}_{\text{new}}(x)$.
- Case 1: perturbations are not visible in $\widetilde{v}_{\text{new}}(x) \widetilde{v}(x)$.
- So: details of size Δ_0 cannot be reconstructed: $\delta > \Delta_0$.
- Case 2: perturbations are visible in $\widetilde{v}_{\text{new}}(x) \widetilde{v}(x)$.
- So: details of size Δ_0 can be reconstructed: $\delta \leq \Delta_0$.

Outline Situations in Which . . . Situations With . . . Situations in Which . . . What If a Model Is Situations in Which ... Example of Asymmetry Situations with No... Towards Optimal . . . Towards Optimal . . . Acknowledgments Title Page **>>** Page 13 of 14

Go Back

Full Screen

13. Towards Optimal Selection of Perturbations

- Fact: since perturbations are small, we can safely linearize their effects.
- Conclusion:
 - based on the results of perturbations $e_1(x), \ldots, e_k(x)$,
 - we can get the results of any linear combination

$$e(x) = c_1 \cdot e_1(x) + \ldots + c_k \cdot e_k(x).$$

- Fact: usually, there is no preferred spatial location.
- Conclusion: we can choose different locations as origins (x = 0) of the coordinate system.
- Natural requirement: the results of perturbations should not change if we change the origin x = 0.

Outline Situations in Which . . . Situations With . . . Situations in Which . . . What If a Model Is Situations in Which . . . Example of Asymmetry Situations with No... Towards Optimal . . . Towards Optimal . . . Acknowledgments Title Page Page 14 of 14 Go Back Full Screen Close

14. Towards Optimal Perturbations (cont-d)

- Reminder: the class of perturbations should not change when we change the origin x = 0.
- Fact: in new coordinates, $x_{\text{new}} = x + x_0$.
- Conclusion: the set $\{c_1 \cdot e_1(x) + \ldots + c_k \cdot e_k(x)\}$ must be shift-invariant: $e_i(x + x_0) = \sum_{i=1}^k c_{ij}(x_0) \cdot e_j(x)$.
- When $x_0 \to 0$, we get a system of linear differential equations with constant coefficients.
- General solution: linear combination of expressions $\exp(\sum a_i \cdot x_i)$ with complex a_i .
- Fact: perturbations must be uniformly small.
- So: the only bounded perturbations are linear combinations of sinusoids.
- Conclusion: use sinusoidal perturbations.

Situations in Which...

Situations With . . .

Situations in Which...

What If a Model Is...

Situations in Which...

Outline

Example of Asymmetry

Situations with No...

Towards Optimal . . .

Towards Optimal...

Acknowledgments

4 **>>**

Title Page

4 □

Page 15 of 14

Go Back

Full Screen

15. Acknowledgments

This work was supported in part:

- by NSF Cyber-Share grant HRD-0734825:
 - A Center for Sharing Cyberresources to Advance Science and Education;
- by Grant 1 T36 GM078000-01 from the National Institutes of Health:
 - Enhancement of Qualitative Science;
- by the Japan Advanced Institute of Science and Technology (JAIST) Int'l Joint Research Grant 2006-08.

Outline Situations in Which . . . Situations With . . . Situations in Which . . . What If a Model Is Situations in Which ... Example of Asymmetry Situations with No Towards Optimal . . . Towards Optimal . . . Acknowledgments Title Page Page 16 of 14 Go Back Full Screen Close

16. Interval Computations as a Particular Case of Global **Optimization**

- Given: an algorithm $y = f(x_1, \dots, x_n)$ and n intervals $\mathbf{x}_i = [x_i, \overline{x}_i].$
- Compute: the corresponding range of y:

$$[y, \overline{y}] = \{ f(x_1, \dots, x_n) \mid x_1 \in [\underline{x}_1, \overline{x}_1], \dots, x_n \in [\underline{x}_n, \overline{x}_n] \}.$$

• Reduction to optimization: in the general case, $y(\overline{y})$:

Minimize (Maximize)
$$f(x_1, \ldots, x_n)$$

where f is directly computable, under the constraints

$$\underline{x}_1 \le x_1 \le \overline{x}_1, \dots, \underline{x}_n \le x_n \le \overline{x}_n.$$

• Cosmological case: f is not directly computable:

$$f(x_1,\ldots,x_n) \stackrel{\text{def}}{=} \operatorname{argmin} F(x_1,\ldots,x_n,y_1,\ldots,y_m).$$

Situations in Which . . .

Outline

Situations With . . .

Situations in Which . . .

What If a Model Is...

Situations in Which . . .

Example of Asymmetry

Situations with No...

Towards Optimal . . . Acknowledgments

Towards Optimal . . .

Title Page **>>**

Go Back

Full Screen

Linearization

- General case: NP-hard.
- Typical situation: direct measurements are accurate enough, so the approximation errors Δx_i are small.
- Conclusion: terms quadratic (or of higher order) in Δx_i can be safely neglected.
- Example: for $\Delta x_i = 1\%$, we have $\Delta x_i^2 = 0.01\% \ll \Delta x_i$.
- Linearization:
 - expand f in Taylor series around the point $(\widetilde{x}_1,\ldots,\widetilde{x}_n)$;

 - restrict ourselves only to linear terms:

$$\Delta y = c_1 \cdot \Delta x_1 + \ldots + c_n \cdot \Delta x_n$$
, where $c_i \stackrel{\text{def}}{=} \frac{\partial f}{\partial x_i}$.

- Interval case: $|\Delta x_i| \leq \Delta_i$.
- Result: $\Delta \stackrel{\text{def}}{=} \max |\Delta y| = |c_1| \cdot \Delta_1 + \ldots + |c_n| \cdot \Delta_n$.

Outline

Situations in Which . . . Situations With . . .

Situations in Which . . .

What If a Model Is Situations in Which ...

Example of Asymmetry

Situations with No... Towards Optimal . . .

Towards Optimal . . . Acknowledgments

> Title Page **>>**

Page 18 of 14

Go Back

Full Screen

Computations under Linearization: From Numerical Differentiation to Monte-Carlo Approach

• Linearization:
$$\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i$$
, where $c_i \stackrel{\text{def}}{=} \frac{\partial f}{\partial x_i}$.

• Formulas:
$$\sigma^2 = \sum_{i=1}^n c_i^2 \cdot \sigma_i^2$$
, $\Delta = \sum_{i=1}^n |c_i| \cdot \Delta_i$.

- Numerical differentiation: n iterations, too long.
- Monte-Carlo approach: if Δx_i are Gaussian w/σ_i , then $\Delta y = \sum_{i=1}^n c_i \cdot \Delta x_i$ is also Gaussian, $w/\text{desired }\sigma$.
- Advantage: # of iterations does not grow with n.
- Interval estimates: if Δx_i are Cauchy, $w/\rho_i(x) = \frac{\Delta_i}{\Delta_i^2 + x^2}$, then $\Delta y = \sum_{i=1}^n c_i \cdot \Delta x_i$ is also Cauchy, $w/\text{desired } \Delta$.

Outline Situations in Which . . . Situations With . . . Situations in Which . . . What If a Model Is... Situations in Which . . . Example of Asymmetry Situations with No... Towards Optimal . . . Towards Optimal . . . Acknowledgments

Page 19 of 14

Go Back

Full Screen

Title Page

>>

Resulting Fast (Linearized) Algorithm for Esti-**19**. mating Interval Uncertainty

- Apply f to \widetilde{x}_i : $\widetilde{y} := f(\widetilde{x}_1, \dots, \widetilde{x}_n)$;
- For $k = 1, 2, \dots, N$, repeat the following:
 - use RNG to get $r_i^{(k)}$, i = 1, ..., n from U[0, 1];
 - get st. Cauchy values $c_i^{(k)} := \tan(\pi \cdot (r_i^{(k)} 0.5));$
 - compute $K := \max_{i} |c_{i}^{(k)}|$ (to stay in linearized area);
 - simulate "actual values" $x_i^{(k)} := \widetilde{x}_i \delta_i^{(k)}$, where $\delta_i^{(k)} := \Delta_i \cdot c_i^{(k)} / K;$
 - simulate error of the indirect measurement:

$$\delta^{(k)} := K \cdot \left(\widetilde{y} - f\left(x_1^{(k)}, \dots, x_n^{(k)}\right) \right);$$

• Solve the ML equation $\sum_{k=1}^{N} \frac{1}{1+\left(\frac{\delta^{(k)}}{\Lambda}\right)^2} = \frac{N}{2}$ by bisec-

tion, and get the desired Δ .

Situations With . . .

Situations in Which . . .

Situations in Which . . .

What If a Model Is...

Outline

Situations in Which . . .

Example of Asymmetry

Situations with No...

Towards Optimal . . .

Towards Optimal . . .

Acknowledgments

Title Page

Go Back

Full Screen

20. A New (Heuristic) Approach

- Problem: guaranteed (interval) bounds are too high.
- Gaussian case: we only have bounds guaranteed with confidence, say, 90%.
- How: cut top 5% and low 5% off a normal distribution.
- New idea: to get similarly estimates for intervals, we "cut off" top 5% and low 5% of Cauchy distribution.
- *How:*
 - find the threshold value x_0 for which the probability of exceeding this value is, say, 5%;
 - replace values x for which $x > x_0$ with x_0 ;
 - replace values x for which $x < -x_0$ with $-x_0$;
 - use this "cut-off" Cauchy in error estimation.
- Example: for 95% confidence level, we need $x_0 = 12.706$.

Outline Situations in Which . . . Situations With . . . Situations in Which . . . What If a Model Is Situations in Which . . . Example of Asymmetry Situations with No... Towards Optimal . . . Towards Optimal . . . Acknowledgments Title Page **>>**

Page 21 of 14

Go Back

Full Screen

21. Alternative Approach: Maximum Entropy

- Situation: in many practical applications, it is very difficult to come up with the probabilities.
- Traditional engineering approach: use probabilistic techniques.
- *Problem:* many different probability distributions are consistent with the same observations.
- Solution: select one of these distributions e.g., the one with the largest entropy.
- Example single variable: if all we know is that $x \in [\underline{x}, \overline{x}]$, then MaxEnt leads to the uniform distribution.
- Example multiple variables: different variables are independently distributed.

Outline Situations in Which . . . Situations With . . . Situations in Which . . . What If a Model Is Situations in Which ... Example of Asymmetry Situations with No... Towards Optimal . . . Towards Optimal . . . Acknowledgments Title Page **>>** Page 22 of 14 Go Back Full Screen Close

22. General Limitations of Maximum Entropy Approach

- Example: simplest algorithm $y = x_1 + \ldots + x_n$.
- Measurement errors: $\Delta x_i \in [-\Delta, \Delta]$.
- Analysis: $\Delta y = \Delta x_1 + \ldots + \Delta x_n$.
- Worst case situation: $\Delta y = n \cdot \Delta$.
- Maximum Entropy approach: due to Central Limit Theorem, Δy is \approx normal, with $\sigma = \Delta \cdot \frac{\sqrt{n}}{\sqrt{3}}$.
- Why this may be inadequate: we get $\Delta \sim \sqrt{n}$, but due to correlation, it is possible that $\Delta = n \cdot \Delta \sim n \gg \sqrt{n}$.
- Conclusion: using a single distribution can be very misleading, especially if we want guaranteed results.
- Examples: high-risk application areas such as space exploration or nuclear engineering.

Situations in Which . . .

Outline

Situations With . . .

Situations in Which...

What If a Model Is...

Situations in Which...

Example of Asymmetry

Situations with No...

Towards Optimal . . .
Towards Optimal . . .

Acknowledgments

Go Back

Full Screen

23. Interval Computations: A Brief History

- Origins: Archimedes (Ancient Greece)
- Modern pioneers: Warmus (Poland), Sunaga (Japan), Moore (USA), 1956–59
- First boom: early 1960s.
- First challenge: taking interval uncertainty into account when planning spaceflights to the Moon.
- Current applications (sample):
 - design of elementary particle colliders: Berz, Kyoko (USA)
 - will a comet hit the Earth: Berz, Moore (USA)
 - robotics: Jaulin (France), Neumaier (Austria)
 - chemical engineering: Stadtherr (USA)

Outline Situations in Which . . . Situations With . . . Situations in Which . . . What If a Model Is Situations in Which . . . Example of Asymmetry Situations with No... Towards Optimal . . . Towards Optimal . . . Acknowledgments Title Page **>>** Page 24 of 14 Go Back

Full Screen

24. Interval Arithmetic: Foundations of Interval Techniques

• *Problem:* compute the range

$$[\underline{y},\overline{y}] = \{ f(x_1,\ldots,x_n) \mid x_1 \in [\underline{x}_1,\overline{x}_1],\ldots,x_n \in [\underline{x}_n,\overline{x}_n] \}.$$

- Interval arithmetic: for arithmetic operations $f(x_1, x_2)$ (and for elementary functions), we have explicit formulas for the range.
- Examples: when $x_1 \in \mathbf{x}_1 = [\underline{x}_1, \overline{x}_1]$ and $x_2 \in \mathbf{x}_2 = [\underline{x}_2, \overline{x}_2]$, then:
 - The range $\mathbf{x}_1 + \mathbf{x}_2$ for $x_1 + x_2$ is $[\underline{x}_1 + \underline{x}_2, \overline{x}_1 + \overline{x}_2]$.
 - The range $\mathbf{x}_1 \mathbf{x}_2$ for $x_1 x_2$ is $[\underline{x}_1 \overline{x}_2, \overline{x}_1 \underline{x}_2]$.
 - The range $\mathbf{x}_1 \mathbf{x}_2$ for $x_1 x_2$ is $[\underline{x}_1 x_2, x_1 \underline{x}_2]$. - The range $\mathbf{x}_1 \cdot \mathbf{x}_2$ for $x_1 \cdot x_2$ is $[y, \overline{y}]$, where

$$\underline{y} = \min(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \overline{x}_2, \overline{x}_1 \cdot \underline{x}_2, \overline{x}_1 \cdot \overline{x}_2);$$

$$\overline{y} = \max(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \overline{x}_2, \overline{x}_1 \cdot \underline{x}_2, \overline{x}_1 \cdot \overline{x}_2).$$

• The range $1/\mathbf{x}_1$ for $1/x_1$ is $[1/\overline{x}_1, 1/\underline{x}_1]$ (if $0 \notin \mathbf{x}_1$).

Situations in Which . . .

Outline

Situations With...

Situations in Which...

What If a Model Is...
Situations in Which...

Example of Asymmetry

Situations with No...

Towards Optimal...
Towards Optimal...

Title Page

Acknowledgments

.

>>

Page 25 of 14

Go Back

Go Ba

Full Screen

Straightforward Interval Computations: Example

- Example: $f(x) = (x-2) \cdot (x+2), x \in [1,2].$
- How will the computer compute it?
 - \bullet $r_1 := x 2;$
 - $\bullet r_2 := x + 2$:
 - $\bullet r_3 := r_1 \cdot r_2.$
- tervals instead of numbers:
 - $\mathbf{r}_1 := [1, 2] [2, 2] = [-1, 0];$
 - $\mathbf{r}_2 := [1, 2] + [2, 2] = [3, 4];$
 - $\mathbf{r}_3 := [-1, 0] \cdot [3, 4] = [-4, 0].$
- Actual range: $f(\mathbf{x}) = [-3, 0]$.
- Comment: this is just a toy example, there are more efficient ways of computing an enclosure $Y \supseteq y$.

• Main idea: perform the same operations, but with in-

Situations With . . .

Situations in Which . . .

Situations in Which . . .

Outline

What If a Model Is Situations in Which ...

Example of Asymmetry

Situations with No... Towards Optimal . . .

Towards Optimal . . .

Acknowledgments Title Page

Page 26 of 14

>>

Go Back

Full Screen

First Idea: Use of Monotonicity

- Reminder: for arithmetic, we had exact ranges.
- Reason: $+, -, \cdot$ are monotonic in each variable.
- How monotonicity helps: if $f(x_1, \ldots, x_n)$ is (non-strictly) increasing $(f \uparrow)$ in each x_i , then

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)=[f(\underline{x}_1,\ldots,\underline{x}_n),f(\overline{x}_1,\ldots,\overline{x}_n)].$$

• Similarly: if $f \uparrow$ for some x_i and $f \downarrow$ for other x_i (-).

- Fact: $f \uparrow \text{ in } x_i \text{ if } \frac{\partial f}{\partial x_i} \geq 0.$
- Checking monotonicity: check that the range $[\underline{r}_i, \overline{r}_i]$ of $\frac{\partial f}{\partial x_i}$ on \mathbf{x}_i has $\underline{r}_i \geq 0$.
- Differentiation: by Automatic Differentiation (AD) tools.
- Estimating ranges of $\frac{\partial f}{\partial x}$: straightforward interval comp.

Situations in Which . . .

Situations With . . .

Situations in Which . . .

What If a Model Is...

Outline

Situations in Which . . . Example of Asymmetry

Situations with No...

Towards Optimal . . .

Towards Optimal . . .

Title Page

Acknowledgments

>>

Page 27 of 14

Go Back

Full Screen

Monotonicity: Example

then

• *Idea*: if the range
$$[\underline{r}_i, \overline{r}_i]$$
 of each $\frac{\partial f}{\partial x_i}$ on \mathbf{x}_i has $\underline{r}_i \geq 0$, then

 $f(\mathbf{x}_1,\ldots,\mathbf{x}_n)=[f(x_1,\ldots,x_n),f(\overline{x}_1,\ldots,\overline{x}_n)].$

• Example:
$$f(x) = (x-2) \cdot (x+2), \mathbf{x} = [1, 2].$$

• Case n=1: if the range $[\underline{r},\overline{r}]$ of $\frac{df}{dx}$ on \mathbf{x} has $\underline{r}\geq 0$,

$$f(\mathbf{x}) = [f(\underline{x}), f(\overline{x})].$$
• $AD: \frac{df}{dx} = 1 \cdot (x+2) + (x-2) \cdot 1 = 2x.$

- Checking: $[\underline{r}, \overline{r}] = [2, 4]$, with $2 \ge 0$.
- Result: f([1,2]) = [f(1), f(2)] = [-3,0].
- Comparison: this is the exact range.

Situations With . . . Situations in Which . . .

Situations in Which . . .

Example of Asymmetry

Outline

What If a Model Is Situations in Which . . .

Situations with No... Towards Optimal . . .

> Title Page **>>**

Towards Optimal . . .

Acknowledgments

Page 28 of 14

Go Back

Full Screen

Non-Monotonic Example

- Example: $f(x) = x \cdot (1-x), x \in [0,1]$.
- How will the computer compute it?
 - \bullet $r_1 := 1 x$;
 - \bullet $r_2 := x \cdot r_1$.
- Straightforward interval computations:
 - $\mathbf{r}_1 := [1, 1] [0, 1] = [0, 1];$
 - $\mathbf{r}_2 := [0,1] \cdot [0,1] = [0,1].$
- Actual range: min, max of f at \underline{x} , \overline{x} , or when $\frac{df}{dx} = 0$.
- Here, $\frac{df}{dx} = 1 2x = 0$ for x = 0.5, so
 - compute f(0) = 0, f(0.5) = 0.25, and f(1) = 0.
 - $-y = \min(0, 0.25, 0) = 0, \overline{y} = \max(0, 0.25, 0) = 0.25.$
- Resulting range: $f(\mathbf{x}) = [0, 0.25]$.

Situations in Which . . . Situations With . . .

Outline

Situations in Which . . .

What If a Model Is...

Situations in Which . . . Example of Asymmetry

Situations with No... Towards Optimal . . .

Towards Optimal . . . Acknowledgments

Title Page

Page 29 of 14

Go Back

Full Screen

Second Idea: Centered Form

• Main idea: Intermediate Value Theorem

$$f(x_1, \dots, x_n) = f(\widetilde{x}_1, \dots, \widetilde{x}_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\chi) \cdot (x_i - \widetilde{x}_i)$$

for some $\chi_i \in \mathbf{x}_i$.

• Corollary: $f(x_1, \ldots, x_n) \in \mathbf{Y}$, where

$$\mathbf{Y} = \widetilde{y} + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\mathbf{x}_1, \dots, \mathbf{x}_n) \cdot [-\Delta_i, \Delta_i].$$

- Differentiation: by Automatic Differentiation (AD) tools.
- Estimating the ranges of derivatives:
 - if appropriate, by monotonicity, or
 - by straightforward interval computations, or
 - by centered form (more time but more accurate).

Situations in Which . . .

Situations With . . . Situations in Which . . .

What If a Model Is...

Outline

Situations in Which . . .

Example of Asymmetry

Situations with No...

Towards Optimal . . .

Towards Optimal . . .

Acknowledgments Title Page

Centered Form: Example

• General formula:

$$\mathbf{Y} = f(\widetilde{x}_1, \dots, \widetilde{x}_n) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_1, \dots, \mathbf{x}_n) \cdot [-\Delta_i, \Delta_i].$$

- Example: $f(x) = x \cdot (1 x), \mathbf{x} = [0, 1].$
- Here, $\mathbf{x} = [\widetilde{x} \Delta, \widetilde{x} + \Delta]$, with $\widetilde{x} = 0.5$ and $\Delta = 0.5$.
- Case n = 1: $\mathbf{Y} = f(\widetilde{x}) + \frac{df}{dx}(\mathbf{x}) \cdot [-\Delta, \Delta]$.
- $AD: \frac{df}{dx} = 1 \cdot (1-x) + x \cdot (-1) = 1-2x.$
- Estimation: we have $\frac{df}{dx}(\mathbf{x}) = 1 2 \cdot [0, 1] = [-1, 1].$
- Result: $\mathbf{Y} = 0.5 \cdot (1 0.5) + [-1, 1] \cdot [-0.5, 0.5] =$ 0.25 + [-0.5, 0.5] = [-0.25, 0.75].
- Comparison: actual range [0, 0.25], straightforward [0, 1].

Situations in Which . . . Situations With . . .

Situations in Which . . .

Example of Asymmetry

What If a Model Is . . .

Situations in Which . . .

Outline

Situations with No...

Towards Optimal . . .

Acknowledgments Title Page

Towards Optimal . . .

>>

Go Back

Full Screen

Third Idea: Bisection

• Known: accuracy $O(\Delta_i^2)$ of first order formula

$$f(x_1,\ldots,x_n)=f(\widetilde{x}_1,\ldots,\widetilde{x}_n)+\sum_{i=1}^n\frac{\partial f}{\partial x_i}(\chi)\cdot(x_i-\widetilde{x}_i).$$

- *Idea:* if the intervals are too wide, we:
 - split one of them in half $(\Delta_i^2 \to \Delta_i^2/4)$; and
 - take the union of the resulting ranges.
- Example: $f(x) = x \cdot (1-x)$, where $x \in \mathbf{x} = [0,1]$.
- Split: take $\mathbf{x}' = [0, 0.5]$ and $\mathbf{x}'' = [0.5, 1]$.
- 1st range: $1 2 \cdot \mathbf{x} = 1 2 \cdot [0, 0.5] = [0, 1]$, so $f \uparrow$ and $f(\mathbf{x}') = [f(0), f(0.5)] = [0, 0.25].$
- 2nd range: $1 2 \cdot \mathbf{x} = 1 2 \cdot [0.5, 1] = [-1, 0]$, so $f \downarrow$ and $f(\mathbf{x''}) = [f(1), f(0.5)] = [0, 0.25].$
- Result: $f(\mathbf{x}') \cup f(\mathbf{x}'') = [0, 0.25] \text{exact.}$

Situations in Which . . .

Situations With . . .

Situations in Which . . .

What If a Model Is... Situations in Which . . .

Outline

Example of Asymmetry

Towards Optimal . . .

Towards Optimal . . .

Situations with No...

Acknowledgments Title Page

>>

Page 32 of 14

Go Back

Full Screen

Alternative Approach: Affine Arithmetic

- So far: we compute the range of $x \cdot (1-x)$ by multi-
- plying ranges of x and 1-x. • We ignore: that both factors depend on x and are,
- *Idea*: for each intermediate result a, keep an explicit dependence on $\Delta x_i = \widetilde{x}_i - x_i$ (at least its linear terms).

thus, dependent.

• *Implementation:*

$$a = a_0 + \sum_{i=1} a_i \cdot \Delta x_i + [\underline{a}, \overline{a}].$$

- We start: with $x_i = \widetilde{x}_i \Delta x_i$, i.e.,
- $\widetilde{x}_i + 0 \cdot \Delta x_1 + \ldots + 0 \cdot \Delta x_{i-1} + (-1) \cdot \Delta x_i + 0 \cdot \Delta x_{i+1} + \ldots + 0 \cdot \Delta x_n + [0, 0].$
 - Description: $a_0 = \widetilde{x}_i$, $a_i = -1$, $a_j = 0$ for $j \neq i$, and $[a, \overline{a}] = [0, 0].$

Situations in Which . . .

Situations in Which . . .

Situations With . . .

What If a Model Is Situations in Which ...

Outline

Example of Asymmetry

Situations with No...

Towards Optimal . . . Acknowledgments

Towards Optimal . . .

Title Page

>>

Go Back

Full Screen

Affine Arithmetic: Operations

• Representation:
$$a = a_0 + \sum_{i=1}^{n} a_i \cdot \Delta x_i + [\underline{a}, \overline{a}].$$

• Input:
$$a = a_0 + \sum_{i=1}^n a_i \cdot \Delta x_i + \mathbf{a}$$
 and $b = b_0 + \sum_{i=1}^n b_i \cdot \Delta x_i + \mathbf{b}$.

• Operations:
$$c = a \otimes b$$
.

• Addition:
$$c_0 = a_0 + b_0$$
, $c_i = a_i + b_i$, $\mathbf{c} = \mathbf{a} + \mathbf{b}$.

• Subtraction:
$$c_0 = a_0 - b_0$$
, $c_i = a_i - b_i$, $\mathbf{c} = \mathbf{a} - \mathbf{b}$.

• Multiplication:
$$c_0 = a_0 \cdot b_0$$
, $c_i = a_0 \cdot b_i + b_0 \cdot a_i$,

$$\mathbf{c} = a_0 \cdot \mathbf{b} + b_0 \cdot \mathbf{a} + \sum_{i \neq j} a_i \cdot b_j \cdot [-\Delta_i, \Delta_i] \cdot [-\Delta_j, \Delta_j] +$$

$$\sum_{i} a_i \cdot b_i \cdot [-\Delta_i, \Delta_i]^2 +$$

$$\left(\sum_{i} a_{i} \cdot [-\Delta_{i}, \Delta_{i}]\right) \cdot \mathbf{b} + \left(\sum_{i} b_{i} \cdot [-\Delta_{i}, \Delta_{i}]\right) \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{b}.$$

Outline

Situations in Which...

Situations With . . .

Situations in Which...

Situations in Which . . .

What If a Model Is...

Example of Asymmetry

Situations with No...

Towards Optimal . . .

Title Page

Acknowledgments

>>

Go B

Go Back

Full Screen

Affine Arithmetic: Example

- Example: $f(x) = x \cdot (1-x), x \in [0,1]$.
- Here, n=1, $\widetilde{x}=0.5$, and $\Delta=0.5$.
- How will the computer compute it?
 - $\bullet r_1 := 1 x$:
 - $\bullet r_2 := x \cdot r_1.$
- Affine arithmetic: we start with $x = 0.5 \Delta x + [0, 0]$;
 - $\mathbf{r}_1 := 1 (0.5 \Delta) = 0.5 + \Delta x$;
 - $\mathbf{r}_2 := (0.5 \Delta x) \cdot (0.5 + \Delta x)$, i.e.,

$$\mathbf{r}_2 = 0.25 + 0 \cdot \Delta x - [-\Delta, \Delta]^2 = 0.25 + [-\Delta^2, 0].$$

- Resulting range: $\mathbf{v} = 0.25 + [-0.25, 0] = [0, 0.25]$.
- Comparison: this is the exact range.

Situations in Which . . . Situations With . . .

Example of Asymmetry

Situations in Which . . .

What If a Model Is... Situations in Which . . .

Situations with No...

Outline

Towards Optimal . . .

Acknowledgments Title Page

Towards Optimal . . .

>>

Page 35 of 14

Go Back

Full Screen

35. Affine Arithmetic: Towards More Accurate Estimates

- In our simple example: we got the exact range.
- In general: range estimation is NP-hard.
- Meaning: a feasible (polynomial-time) algorithm will sometimes lead to excess width: $\mathbf{Y} \supset \mathbf{y}$.
- Conclusion: affine arithmetic may lead to excess width.
- Question: how to get more accurate estimates?
- First idea: bisection.
- Second idea (Taylor arithmetic):
 - affine arithmetic: $a = a_0 + \sum a_i \cdot \Delta x_i + \mathbf{a}$;
 - meaning: we keep linear terms in Δx_i ;
 - idea: keep, e.g., quadratic terms

$$a = a_0 + \sum a_i \cdot \Delta x_i + \sum a_{ij} \cdot \Delta x_i \cdot \Delta x_j + \mathbf{a}.$$

Outline

Situations in Which...

Situations With . . .

Situations in Which...

What If a Model Is...

Situations in Which...

Example of Asymmetry

Situations with No...

Towards Optimal . . .

Towards Optimal . . .
Acknowledgments

Title Page

Page 36 of 14

Go Back

F...II C.

Full Screen

36. Interval Computations vs. Affine Arithmetic: Comparative Analysis

- Objective: we want a method that computes a reasonable estimate for the range in reasonable time.
- Conclusion how to compare different methods:
 - how accurate are the estimates, and
 - how fast we can compute them.
- Accuracy: affine arithmetic leads to more accurate ranges.
- Computation time:
 - Interval arithmetic: for each intermediate result a, we compute two values: endpoints \underline{a} and \overline{a} of $[\underline{a}, \overline{a}]$.
 - Affine arithmetic: for each a, we compute n+3 values:

$$a_0 \quad a_1, \ldots, a_n \quad \underline{a}, \overline{a}.$$

• Conclusion: affine arithmetic is $\sim n$ times slower.

Outline Situations in Which . . . Situations With . . . Situations in Which . . . What If a Model Is Situations in Which ... Example of Asymmetry Situations with No... Towards Optimal . . . Towards Optimal . . . Acknowledgments Title Page **>>** Page 37 of 14 Go Back

Full Screen

37. Solving Systems of Equations: Extending Known Algorithms to Situations with Interval Uncertainty

- We have: a system of equations $g_i(y_1, ..., y_n) = a_i$ with unknowns y_i ;
- We know: a_i with interval uncertainty: $a_i \in [\underline{a}_i, \overline{a}_i]$;
- We want: to find the corresponding ranges of y_j .
- First case: for exactly known a_i , we have an algorithm $y_j = f_j(a_1, \ldots, a_n)$ for solving the system.
- Example: system of linear equations.
- Solution: apply interval computations techniques to find the range $f_j([\underline{a}_1, \overline{a}_1], \dots, [\underline{a}_n, \overline{a}_n])$.
- Better solution: for specific equations, we often already know which ideas work best.
- Example: linear equations Ay = b; y is monotonic in b.

Outline

Situations in Which...

Situations With . . .

Situations in Which...

What If a Model Is...

Situations in Which...

Example of Asymmetry
Situations with No...

Towards Optimal . . .

Towards Optimal . . .
Acknowledgments

Title Page

>>

Go Back

Full Screen

38. Solving Systems of Equations When No Algorithm Is Known

- *Idea*:
 - parse each equation into elementary constraints, and
 - use interval computations to improve original ranges until we get a narrow range (= solution).
- First example: $x x^2 = 0.5$, $x \in [0, 1]$ (no solution).

• Parsing: $r_1 = x^2$, $0.5 (= r_2) = x - r_1$.

• Rules: from $r_1 = x^2$, we extract two rules:

(1)
$$x \to r_1 = x^2$$
; (2) $r_1 \to x = \sqrt{r_1}$;

from $0.5 = x - r_1$, we extract two more rules:

(3)
$$x \to r_1 = x - 0.5$$
; (4) $r_1 \to x = r_1 + 0.5$.

Outline Situations in Which . . .

Situations With . . .

Situations in Which . . .

Example of Asymmetry

What If a Model Is...

Situations in Which . . .

Situations with No...

Towards Optimal . . .

Towards Optimal . . . Acknowledgments

Title Page

>>

Page 39 of 14

Go Back

Full Screen

39. Solving Systems of Equations When No Algorithm Is Known: Example

- (1) $r = x^2$; (2) $x = \sqrt{r}$; (3) r = x 0.5; (4) x = r + 0.5.
- We start with: $\mathbf{x} = [0, 1], \mathbf{r} = (-\infty, \infty).$
- (1) $\mathbf{r} = [0, 1]^2 = [0, 1]$, so $\mathbf{r}_{new} = (-\infty, \infty) \cap [0, 1] = [0, 1]$.
- (2) $\mathbf{x}_{\text{new}} = \sqrt{[0,1]} \cap [0,1] = [0,1]$ no change.
- (3) $\mathbf{r}_{\text{new}} = ([0, 1] 0.5) \cap [0, 1] = [-0.5, 0.5] \cap [0, 1] = [0, 0.5].$
- (4) $\mathbf{x}_{\text{new}} = ([0, 0.5] + 0.5) \cap [0, 1] = [0.5, 1] \cap [0, 1] = [0.5, 1].$
- (1) $\mathbf{r}_{\text{new}} = [0.5, 1]^2 \cap [0, 0.5] = [0.25, 0.5].$ (2) $\mathbf{x}_{\text{new}} = \sqrt{[0.25, 0.5]} \cap [0.5, 1] = [0.5, 0.71];$
- round a down \downarrow and \overline{a} up \uparrow , to guarantee enclosure. (3) $\mathbf{r}_{\text{new}} = ([0.5, 0.71] - 0.5) \cap [0.25, 5] = [0.0.21] \cap [0.25, 0.5],$
- i.e., $\mathbf{r}_{\text{new}} = \emptyset$.
 - Conclusion: the original equation has no solutions.

Outline Situations in Which . . .

Situations With . . .

Situations in Which . . .

What If a Model Is

Situations in Which . . .

Example of Asymmetry

Situations with No...

Towards Optimal . . .

Towards Optimal . . .

Acknowledgments

Title Page

>>

Page 40 of 14

Go Back

Full Screen

Solving Systems of Equations: Second Example

- Example: $x x^2 = 0, x \in [0, 1]$.
- Parsing: $r_1 = x^2$, $0 (= r_2) = x r_1$.
- Rules: (1) $r = x^2$; (2) $x = \sqrt{r}$; (3) r = x; (4) x = r.
- We start with: $\mathbf{x} = [0, 1], \mathbf{r} = (-\infty, \infty).$
- Problem: after Rule 1, we're stuck with $\mathbf{x} = \mathbf{r} = [0, 1]$.
- *Solution:* bisect $\mathbf{x} = [0, 1]$ into [0, 0.5] and [0.5, 1].
- For 1st subinterval:
 - Rule 1 leads to $\mathbf{r}_{\text{new}} = [0, 0.5]^2 \cap [0, 0.5] = [0, 0.25];$
 - Rule 4 leads to $\mathbf{x}_{new} = [0, 0.25];$
 - Rule 1 leads to $\mathbf{r}_{\text{new}} = [0, 0.25]^2 = [0, 0.0625];$
 - Rule 4 leads to $\mathbf{x}_{new} = [0, 0.0625]$; etc.
 - we converge to x = 0.
- For 2nd subinterval: we converge to x = 1.

Outline

Situations in Which...

Situations With...
Situations in Which...

What If a Model Is...

Situations in Which...

Example of Asymmetry

Situations with No...

Towards Optimal . . .

Towards Optimal . . .

Title Page

Acknowledgments

>>

Go Back

Full Screen

Optimization: Extending Known Algorithms to Situations with Interval Uncertainty

• Problem: find y_1, \ldots, y_m for which

$$g(y_1,\ldots,y_m,a_1,\ldots,a_m)\to \max.$$

- We know: a_i with interval uncertainty: $a_i \in [\underline{a}_i, \overline{a}_i]$;
- We want: to find the corresponding ranges of y_i .
- First case: for exactly known a_i , we have an algorithm $y_i = f_i(a_1, \dots, a_n)$ for solving the optimization problem.
- Example: quadratic objective function g.
- Solution: apply interval computations techniques to find the range $f_i([\underline{a}_1, \overline{a}_1], \dots, [\underline{a}_n, \overline{a}_n])$.
- Better solution: for specific f, we often already know which ideas work best.

Situations in Which . . .

Situations With . . .

Outline

Situations in Which . . .

What If a Model Is

Situations in Which . . . Example of Asymmetry

Situations with No...

Towards Optimal . . .

Towards Optimal . . . Acknowledgments

Title Page

>>

Page 42 of 14

Go Back

Full Screen

42. Optimization When No Algorithm Is Known

- Idea: divide the original box **x** into subboxes **b**.
- If $\max_{x \in \mathbf{b}} g(x) < g(x')$ for a known x', dismiss \mathbf{b} .
- Example: $g(x) = x \cdot (1 x), \mathbf{x} = [0, 1].$
- Divide into 10 (?) subboxes $\mathbf{b} = [0, 0.1], [0.1, 0.2], \dots$
- Find $g(\tilde{b})$ for each **b**; the largest is $0.45 \cdot 0.55 = 0.2475$.
- Compute $G(\mathbf{b}) = g(\widetilde{b}) + (1 2 \cdot \mathbf{b}) \cdot [-\Delta, \Delta].$
- Dismiss subboxes for which $\overline{Y} < 0.2475$.
- Example: for [0.2, 0.3], we have $0.25 \cdot (1 0.25) + (1 2 \cdot [0.2, 0.3]) \cdot [-0.05, 0.05]$.
- Here $\overline{Y} = 0.2175 < 0.2475$, so we dismiss [0.2, 0.3].
- Result: keep only boxes $\subseteq [0.3, 0.7]$.
- Further subdivision: get us closer and closer to x = 0.5.

Traditional . . . In Practice, the . . . Outline Situations in Which . . . Situations With . . . Situations in Which . . . What If a Model Is Situations in Which . . . Example of Asymmetry Situations with No . . . Towards Optimal . . . Towards Optimal . . . Acknowledgments Title Page 44 **>>** Page 43 of 14 Go Back Full Screen Close Quit