Decision Making under Uncertainty: Algorithmic Approach (brief overview of related UTEP research)

Vladik Kreinovich

Department of Computer Science University of Texas at El Paso El Paso, TX 79968, USA vladik@utep.edu

http://www.cs.utep.edu/vladik

Quantitative . . . The Notion of Utility Traditional Approach: . . Need for Distributed Privacy-Motivated . . . Uncertainty Leads to . . Uncertainty in . . . Uncertainty in System . . Symmetry Approach . . . Home Page

>>

Page 1 of 62

Go Back

Full Screen

Close

Quit

1. Quantitative Approach to Decision Making: Misunderstandings

- Researchers and practitioners in computer science usually start with the *utility-based* approach.
- Many humanities researchers believe that the utilitybased approach is oversimplified and long *discredited*.
- Main reason: they consider an easy-to-dismiss *carica-ture* instead of the actual utility approach.
- In view of this widely spread misunderstanding, we first start by explaining the *actual* utility-based approach.
- Our main area of research is how to add *uncertainty* to the traditional approach.
- We concentrate on *interval* and *fuzzy* uncert., emphasizing that "fuzzy" has a very precise meaning in CS.
- In this process, we provide examples of applications.

2. Decision Making: General Need and Traditional Approach

- To make a decision, we must:
 - find out the user's preference, and
 - help the user select an alternative which is the best
 - according to these preferences.
- Traditional approach is based on an assumption that for each two alternatives A' and A'', a user can tell:
 - whether the first alternative is better for him/her; we will denote this by A'' < A';
 - or the second alternative is better; we will denote this by A' < A'';
 - or the two given alternatives are of equal value to the user; we will denote this by A' = A''.

3. The Notion of Utility

- Under the above assumption, we can form a natural numerical scale for describing preferences.
- Let us select a very bad alternative A_0 and a very good alternative A_1 .
- Then, most other alternatives are better than A_0 but worse than A_1 .
- For every prob. $p \in [0, 1]$, we can form a lottery L(p) in which we get A_1 w/prob. p and A_0 w/prob. 1 p.
- When p = 0, this lottery simply coincides with the alternative A_0 : $L(0) = A_0$.
- The larger the probability p of the positive outcome increases, the better the result:

$$p' < p''$$
 implies $L(p') < L(p'')$.

4. The Notion of Utility (cont-d)

- Finally, for p = 1, the lottery coincides with the alternative A_1 : $L(1) = A_1$.
- Thus, we have a continuous scale of alternatives L(p) that monotonically goes from $L(0) = A_0$ to $L(1) = A_1$.
- Due to monotonicity, when p increases, we first have L(p) < A, then we have L(p) > A.
- The threshold value is called the *utility* of the alternative A:

$$u(A) \stackrel{\text{def}}{=} \sup\{p : L(p) < A\} = \inf\{p : L(p) > A\}.$$

• Then, for every $\varepsilon > 0$, we have

$$L(u(A) - \varepsilon) < A < L(u(A) + \varepsilon).$$

• We will describe such (almost) equivalence by \equiv , i.e., we will write that $A \equiv L(u(A))$.

The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . Uncertainty in . . . Uncertainty in System... Symmetry Approach . . Home Page Title Page **>>** Page 5 of 62 Go Back Full Screen Close Quit

5. Fast Iterative Process for Determining u(A)

- Initially: we know the values $\underline{u} = 0$ and $\overline{u} = 1$ such that $A \equiv L(u(A))$ for some $u(A) \in [\underline{u}, \overline{u}]$.
- What we do: we compute the midpoint u_{mid} of the interval $[\underline{u}, \overline{u}]$ and compare A with $L(u_{\text{mid}})$.
- Possibilities: $A \leq L(u_{\text{mid}})$ and $L(u_{\text{mid}}) \leq A$.
- Case 1: if $A \leq L(u_{\text{mid}})$, then $u(A) \leq u_{\text{mid}}$, so

$$u \in [\underline{u}, u_{\mathrm{mid}}].$$

- Case 2: if $L(u_{\text{mid}}) \leq A$, then $u_{\text{mid}} \leq u(A)$, so
 - $u \in [u_{\mathrm{mid}}, \overline{u}].$
- After each iteration, we decrease the width of the interval $[\underline{u}, \overline{u}]$ by half.
- After k iterations, we get an interval of width 2^{-k} which contains u(A) i.e., we get u(A) w/accuracy 2^{-k} .

The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . Uncertainty in . . . Uncertainty in System... Symmetry Approach . . . Home Page Title Page **>>** Page 6 of 62 Go Back Full Screen Close Quit

6. How to Make a Decision Based on Utility Values

- Suppose that we have found the utilities u(A'), u(A''), ..., of the alternatives A', A'', ...
- Which of these alternatives should we choose?
- By definition of utility, we have:
 - $A \equiv L(u(A))$ for every alternative A, and
 - L(p') < L(p'') if and only if p' < p''.
- We can thus conclude that A' is preferable to A'' if and only if u(A') > u(A'').
- In other words, we should always select an alternative with the largest possible value of utility.
- So, to find the best solution, we must solve the corresponding optimization problem.

Quantitative . . . The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . . Uncertainty in . . . Uncertainty in System . . Symmetry Approach . . Home Page Title Page **>>** Page 7 of 62 Go Back

Full Screen

Close

Quit

7. Before We Go Further: Caution

- We are *not* claiming that people estimate probabilities when they make decisions: we know they often don't.
- Our claim: when people make definite and consistent choices, these choices can be described by probabilities.
- Example: a falling rock does not solve equations but follows Newton's equations $ma = m \frac{d^2x}{dt^2} = -mg$.
- In practice, decisions are often *not* definite (uncertain) and *not* consistent.
- *Inconsistency* is one of the reasons why people make bad decisions (drugs, health hazards, speeding).
- People do choose A > B > C > A; we need psychologists and sociologists to study and solve this problem.
- *Uncertainty* is what we concentrate on; see below.

8. How to Estimate Utility of an Action

- For each action, we usually know possible outcomes S_1, \ldots, S_n .
- We can often estimate the prob. p_1, \ldots, p_n of these outcomes.
- By definition of utility, each situation S_i is equiv. to a lottery $L(u(S_i))$ in which we get:
 - A_1 with probability $u(S_i)$ and
 - A_0 with the remaining probability $1 u(S_i)$.
- Thus, the action is equivalent to a complex lottery in which:
 - first, we select one of the situations S_i with probability p_i : $P(S_i) = p_i$;
 - then, depending on S_i , we get A_1 with probability $P(A_1 | S_i) = u(S_i)$ and A_0 w/probability $1 u(S_i)$.

9. How to Estimate Utility of an Action (cont-d)

- Reminder:
 - first, we select one of the situations S_i with probability p_i : $P(S_i) = p_i$;
 - then, depending on S_i , we get A_1 with probability $P(A_1 | S_i) = u(S_i)$ and A_0 w/probability $1 u(S_i)$.
- The prob. of getting A_1 in this complex lottery is:

$$P(A_1) = \sum_{i=1}^{n} P(A_1 \mid S_i) \cdot P(S_i) = \sum_{i=1}^{n} u(S_i) \cdot p_i.$$

- In the complex lottery, we get:
 - A_1 with prob. $u = \sum_{i=1}^n p_i \cdot u(S_i)$, and
 - A_0 w/prob. 1 u.
- So, we should select the action with the largest value of expected utility $u = \sum p_i \cdot u(S_i)$.

10. Subjective Probabilities

- In practice, we often do not know the probabilities p_i of different outcomes.
- For each event E, a natural way to estimate its subjective probability is to fix a prize (e.g., \$1) and compare:
 - the lottery ℓ_E in which we get the fixed prize if the event E occurs and 0 is it does not occur, with
 - a lottery $\ell(p)$ in which we get the same amount with probability p.
- Here, similarly to the utility case, we get a value ps(E) for which, for every $\varepsilon > 0$:

$$\ell(ps(E) - \varepsilon) < \ell_E < \ell(ps(E) + \varepsilon).$$

• Then, the utility of an action with possible outcomes S_1, \ldots, S_n is equal to $u = \sum_{i=1}^n ps(E_i) \cdot u(S_i)$.

11. Auxiliary Issue: Almost-Uniqueness of Utility

- The above definition of utility u depends on A_0 , A_1 .
- What if we use different alternatives A'_0 and A'_1 ?
- Every A is equivalent to a lottery L(u(A)) in which we get A_1 w/prob. u(A) and A_0 w/prob. 1 u(A).
- For simplicity, let us assume that $A'_0 < A_0 < A_1 < A'_1$.
- Then, $A_0 \equiv L'(u'(A_0))$ and $A_1 \equiv L'(u'(A_1))$.
- So, A is equivalent to a complex lottery in which:
 - 1) we select A_1 w/prob. u(A) and A_0 w/prob. 1-u(A);
 - 2) depending on A_i , we get A'_1 w/prob. $u'(A_i)$ and A'_0 w/prob. $1 u'(A_i)$.
- In this complex lottery, we get A'_1 with probability $u'(A) = u(A) \cdot (u'(A_1) u'(A_0)) + u'(A_0)$.
- So, in general, utility is defined modulo an (increasing) linear transformation $u' = a \cdot u + b$, with a > 0.

The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . Uncertainty in . . . Uncertainty in System... Symmetry Approach . . . Home Page Title Page **>>** Page 12 of 62 Go Back Full Screen Close Quit

12. Traditional Approach Summarized

- Traditional approach summarized:
 - we assume that we know possible actions, and
 - we assume that we know the exact consequences of each action;
 - then we should select an action with the largest value of expected utility.
- Similarly, when we have several participants:
 - we assume that we know the preferences of each participant,
 - then game theory provides us with reasonable solutions:
 - * maximin for zero-sum games,
 - * Nash bargaining solution, Nash equilibrium, or Shapley vector for cooperative games, etc.

13. Traditional Approach: Algorithmic Challenges

- In all these cases, we have a well-defined mathematical problem (e.g., an optimization problem).
- *Problem:* the existing algorithms run *too long* when the number of parameters increase.
- The first algorithmic challenge is to find *feasible* algorithms for solving these problems.
- Case study: security-related problems:
 - assigning air marshals to flights,
 - assigning security personnel to airport terminals, etc.
- Mathematically, solutions are known, but for thousands of flight, existing algorithms are inadequate.
- For these problems, Chris Kiekintveld developed new efficient algorithms, used by Homeland Security.

14. Need for Distributed Decision Making and the Resulting Algorithmic Challenges

- Traditional approach: we have a central decision maker.
- In practice: decisions are often made locally.
- Challenge: to operate efficiently, a distributed system needs a stable self-healing self-adjusting control.
- Example: Internet became possible only when Transmission Control Protocol (TCP) was invented.
- Research direction (E. Freudenthal): develop similar solutions for other systems.
- Example 1: transfer of medical information from patientside sensors to patient-monitoring systems.
- Example 2: peer-to-peer communications, how to make sure that everyone contributes.

15. Need to Take Uncertainty into Account

- In the traditional approach, we assume that:
 - we know exactly which actions are possible,
 - we know the exact preferences of each participant,
 - we know the exact consequences of each action.
- Then, we have a constraint optimization problem.
- In reality:
 - we may not know exactly which actions are possible (i.e., we have "soft" constraints);
 - we only have partial information about the preferences; and
 - we only have partial information about consequences of each action.
- In this case, we face a problem of optimization and decision making under uncertainty.

16. Types of Uncertainty

- Ideally, for each quantity, we need to know:
 - which values are possible, and
 - how frequent are different possible values.
- So ideally, we should have *probabilistic* uncertainty.
- Sometimes, we only know the range $[\underline{x}, \overline{x}]$ of possible values; in this case, we have *interval* uncertainty.
- Sometimes, we also know narrower bounds $[\underline{x}(\alpha), \overline{x}(\alpha)]$ valid with some degree of certainty α .
- Such family of nested intervals is known as a *fuzzy set*.
- The degree of certainty can be described, e.g., by a Likert scale.
- Sometimes, we also know a $range [\underline{p}, \overline{p}]$ of probabilities p (or of mean or variance).

The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . Uncertainty in . . . Uncertainty in System... Symmetry Approach . . . Home Page Title Page **>>** Page 17 of 62 Go Back Full Screen Close Quit

17. Privacy-Motivated Additional Uncertainty

- *Problem:* we often do not know what causes different diseases, which treatment is most efficient.
- Solution: collect data about patients, look for patterns.
- Specifics: since we do not know a priori which patterns to look for, we need to try various hypotheses.
- *Problem:* if we allow arbitrary queries, we may be able to reveal individual records thus violating privacy.
- Example: how far influence from Asarco?
- We try average until 1001 Robinson and until 1003 Robinson, so we get the exact data re 1003 Robinson.
- Solution: instead of storing the original data, store ranges, e.g., for age, 0 to 10, 10 to 20, etc.
- Challenge (L. Longpré) we need to process data and make decisions under this interval uncertainty.

18. Uncertainty Leads to Soft Constraints: Toy Example

- Objective: come to school on time.
- At first glance: precisely formulated problem.
- Fact: traffic jams happen.
- In rare cases: traffic jams can be up to an hour long.
- Guaranteed solution: leave home an hour earlier.
- *Problem:* wasting an hour every day.
- Solution: realize that "on time" is a soft constraint.
- Specifically: it is OK to be late one day a year—when everyone is late due to a traffic jam.

19. Uncertainty Leads to Soft Constraints

- Case study (Martine Ceberio): researchers design an innovative water filtering system.
- Objective: minimize energy use.
- Constraints: lower bound on the output, and physics-based constraints relating parameters.
- At first glance: there is no uncertainty, all physicsmotivated constraints seem exact.
- Surprise: the constraints turned out to be inconsistent.
- Reason: relations are approximate (similar to using 3.14 instead of π).
- Solution: relax constraints, i.e., replace equalities with approximate equalities.
- Algorithmic challenge: to simplify computations, we need to minimize the number of relaxed constraints.

20. Uncertainty in Objective Function: A Problem

- General case: utility depends on the parameters x_1, \ldots, x_n : $u = u(x_1, \ldots, x_n)$.
- First approximation: assume that the dependence is linear $u = \sum_{i=1}^{n} c_i \cdot x_i$.
- In practice: linear dependencies are usually only approximate ones.
- Seemingly natural idea: add quadratic (and higher order) terms $u = \sum_{i=1}^{n} c_i \cdot x_i + \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \cdot x_i \cdot x_j$.
- Fact: the situation is often scale-invariant.
- Example: x_i are money, and preferences should not change if we use not dollars but Euros.
- *Problem:* quadratic preferences are not scale-invariant.

Quantitative . . .

The Notion of Utility

Traditional Approach: . . .

Need for Distributed . . .

Privacy-Motivated . . .

Uncertainty Leads to..

Uncertainty in . . .

Uncertainty in System...

Symmetry Approach...

Home Page

Title Page

Page 21 of 62

Go Back

Full Screen

C

Close

Quit

21. Uncertainty in Objective Function Leads to Non-Additive (Fuzzy) Measures

- *Problem* (reminder): quadratic preferences are not scale-invariant.
- First idea: use scale-invariant ordinal statistics

$$x_{(1)} \le x_{(2)} \le \ldots \le x_{(n)},$$

$$x_{(1)} = \min(x_1, \dots, x_n), \dots, x_{(1)} = \max(x_1, \dots, x_n).$$

- Resulting solution: take $u = \sum_{i=1}^{n} c_i \cdot x_{(i)}$.
- General scale-invariant expression: can be described as an integral over a non-additive ("fuzzy") measure.
- Successful case study (M. Ceberio, X. Wang): how to describe software quality.
- Result: fuzzy measure-based approach better describes expert preferences.

The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . . Uncertainty in . . . Uncertainty in System... Symmetry Approach . . . Home Page Title Page **>>** Page 22 of 62 Go Back Full Screen Close Quit

22. Uncertainty in System Dynamics: Interval-Related Approach

• Traditional approach: dynamics is described by differential equations, like Newton's equations

$$\frac{d^2x}{dt^2} = \frac{F}{m}.$$

• Fact: usually, we do not know the exact equations

$$\dot{x} = f(x).$$

• Possibility: we only know the approximate equations, i.e., we know the ranges $[\underline{f}(x), \overline{f}(x)]$ for which

$$\dot{x} \in \left[\underline{f}(x), \overline{f}(x)\right].$$

• Solution (B. Djafari-Rouhani): analyze such differential inequalities.

23. Uncertainty in System Dynamics: Symmetry Approach

- One of the main objectives of science: prediction.
- Basis for prediction: we observed similar situations in the past, and we expect similar outcomes.
- In mathematical terms: similarity corresponds to symmetry, and similarity of outcomes to invariance.
- Example: we dropped the ball, it fall down.
- Symmetries: shift, rotation, etc.
- Symmetries are ubiquitous in *modern physics*:
 - starting with quarks, new theories are represented in terms of symmetries;
 - traditional physical theories (GRT, QM, Electrodynamics, etc.) can be described in symmetry terms.

Quantitative . . . The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . . Uncertainty in . . . Uncertainty in System... Symmetry Approach . . . Home Page Title Page **>>** Page 24 of 62 Go Back Full Screen Close Quit

24. Beyond Traditional Decision Making: Towards a More Realistic Description

- Previously, we assumed that a user can always decide which of the two alternatives A' and A'' is better:
 - either A' < A'',
 - or A'' < A',
 - $\text{ or } A' \equiv A''.$
- In practice, a user is sometimes unable to meaningfully decide between the two alternatives; denoted $A' \parallel A''$.
- In mathematical terms, this means that the preference relation:
 - is no longer a *total* (linear) order,
 - it can be a *partial* order.

- Similarly to the traditional decision making approach:
 - we select two alternatives $A_0 < A_1$ and
 - we compare each alternative A which is better than A_0 and worse than A_1 with lotteries L(p).
- Since preference is a *partial* order, in general:

$$\underline{u}(A) \stackrel{\text{def}}{=} \sup\{p : L(p) < A\} < \overline{u}(A) \stackrel{\text{def}}{=} \inf\{p : L(p) > A\}.$$

- For each alternative A, instead of a single value u(A) of the utility, we now have an $interval [\underline{u}(A), \overline{u}(A)]$ s.t.:
 - if $p < \underline{u}(A)$, then L(p) < A;
 - if $p > \overline{u}(A)$, then A < L(p); and
 - $\text{ if } \underline{u}(A)$
- We will call this interval the utility of the alternative A.

The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . Uncertainty in . . . Uncertainty in System... Symmetry Approach . . . Home Page Title Page **>>** Page 26 of 62 Go Back Full Screen Close Quit

26. Interval-Valued Utility: Practical Consequences

- *Idea*: select alternative A with largest u(A).
- As situation changes, we may change our selection.
- Interval case: for each alternative, we know the utility with some uncertainty Δ , i.e., we know $\widetilde{u}(A)$ for which

$$u(A) \in [\widetilde{u}(A) - \Delta, \widetilde{u}(A) + \Delta].$$

- Additional aspect: there is usually a cost in change (e.g., a cost in reinvesting in different stocks).
- Conclusion: we only change from A to B if we are sure that u(A) < u(B), i.e., when $\widetilde{u}(A) + \Delta < \widetilde{u}(B) + \Delta$.
- Problem: it is difficult to estimate Δ exactly.
- If we underestimate Δ , we make a lot of unnecessary changes ("mania").
- If we overestimate Δ , we miss good opportunities ("depression").

The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . . Uncertainty in . . . Uncertainty in System... Symmetry Approach . . Home Page Title Page **>>** Page 27 of 62 Go Back Full Screen Close Quit

27. Symmetry Approach to decision Making Under Uncertainty: Examples

- What are the best locations of radiotelescopes forming a Very Large Baseline Interferometer (VLBI)?
- Fact: the optimal location depends on what objects we will observe.
- Challenge: we do not know what objects we will observe with the new VLBI system.
- Environmental sciences: what is the best location of a meteorological tower?
- Fact: the optimal location depends on subtle details of local weather patterns.
- Challenge: these patterns are exactly what we plan to determine with the new tower.
- In all these cases, *symmetry* helps.

Thanks for your attention!

Quantitative ...

The Notion of Utility

Traditional Approach: ...

Need for Distributed ...

Privacy-Motivated ...

Uncertainty Leads to . . .

Uncertainty in System...

Uncertainty in . . .

Title Page

Symmetry Approach . . .

←

Page 29 of 62

Go Back

- ...

Full Screen

Close

Quit

28. Case Study

- Objective: select the best location of a sophisticated multi-sensor meteorological tower.
- Constraints: we have several criteria to satisfy.
- Example: the station should not be located too close to a road.
- *Motivation:* the gas flux generated by the cars do not influence our measurements of atmospheric fluxes.
- Formalization: the distance x_1 to the road should be larger than a threshold t_1 : $x_1 > t_1$, or $y_1 \stackrel{\text{def}}{=} x_1 t_1 > 0$.
- Example: the inclination x_2 at the tower's location should be smaller than a threshold t_2 : $x_2 < t_2$.
- *Motivation:* otherwise, the flux determined by this inclination and not by atmospheric processes.

29. General Case

- In general: we have several differences y_1, \ldots, y_n all of which have to be non-negative.
- For each of the differences y_i , the larger its value, the better.
- Our problem is a typical setting for multi-criteria optimization.
- A most widely used approach to multi-criteria optimization is weighted average, where
 - we assign weights $w_1, \ldots, w_n > 0$ to different criteria y_i and
 - select an alternative for which the weighted average

$$w_1 \cdot y_1 + \ldots + w_n \cdot y_n$$

attains the largest possible value.

0. Limitations of the Weighted Average Approach

- In general: the weighted average approach often leads to reasonable solutions of the multi-criteria problem.
- In our problem: we have an additional requirement that all the values y_i must be positive. So:
 - when selecting an alternative with the largest possible value of the weighted average,
 - we must only compare solutions with $y_i > 0$.
- We will show: under the requirement $y_i > 0$, the weighted average approach is not fully satisfactory.
- Conclusion: we need to find a more adequate solution.

31. Limitations of the Weighted Average Approach: Details

- The values y_i come from measurements, and measurements are never absolutely accurate.
- The results \widetilde{y}_i of the measurements are not exactly equal to the actual (unknown) values y_i .
- If: for some alternative $y = (y_1, \ldots, y_n)$
 - we measure the values y_i with higher and higher accuracy and,
 - based on the measurement results \tilde{y}_i , we conclude that y is better than some other alternative y'.
- Then: we expect that the actual alternative y is indeed better than y' (or at least of the same quality).
- Otherwise, we will not be able to make any meaningful conclusions based on real-life measurements.

The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . Uncertainty in . . . Uncertainty in System... Symmetry Approach . . . Home Page Title Page **>>** Page 33 of 62 Go Back Full Screen Close Quit

The Above Natural Requirement Is Not Always Satisfied for Weighted Average

- Simplest case: two criteria y_1 and y_2 , w/weights $w_i > 0$.
- If $y_1, y_2, y'_1, y'_2 > 0$, and $w_1 \cdot y_1 + w_2 \cdot y_2 > w_1 \cdot y'_1 + w_2 \cdot y'_2$, then $y = (y_1, y_2) \succ y' = (y'_1, y'_2)$.
- If $y_1 > 0$, $y_2 > 0$, and at least one of the values y'_1 and y_2' is non-positive, then $y = (y_1, y_2) \succ y' = (y_1', y_2')$.
- Let us consider, for every $\varepsilon > 0$, the tuple $y(\varepsilon) \stackrel{\text{def}}{=} (\varepsilon, 1 + w_1/w_2)$, and y' = (1, 1).
- In this case, for every $\varepsilon > 0$, we have $w_1 \cdot y_1(\varepsilon) + w_2 \cdot y_2(\varepsilon) = w_1 \cdot \varepsilon + w_2 + w_2 \cdot \frac{w_1}{w_2} = w_1 \cdot (1+\varepsilon) + w_2$
- and $w_1 \cdot y_1' + w_2 \cdot y_2' = w_1 + w_2$, hence $y(\varepsilon) > y'$.
- However, in the limit $\varepsilon \to 0$, we have $y(0) = \left(0, 1 + \frac{w_1}{w_2}\right)$, with $y(0)_1 = 0$ and thus, $y(0) \prec y'$.

Quantitative . . . The Notion of Utility

Traditional Approach: . .

Need for Distributed . . .

Privacy-Motivated . . .

Uncertainty Leads to . . .

Uncertainty in . . .

Uncertainty in System...

Title Page

Symmetry Approach . . .

Home Page

>>

Page 34 of 62

Go Back

Full Screen

Close

Quit

33. Towards a Precise Description

- Each alternative is characterized by a tuple of n positive values $y = (y_1, \ldots, y_n)$.
- Thus, the set of all alternatives is the set $(R^+)^n$ of all the tuples of positive numbers.
- For each two alternatives y and y', we want to tell whether
 - -y is better than y' (we will denote it by $y \succ y'$ or $y' \prec y$),
 - or y' is better than $y (y' \succ y)$,
 - or y and y' are equally good $(y' \sim y)$.
- Natural requirement: if y is better than y' and y' is better than y'', then y is better than y''.
- The relation \succ must be transitive.

34. Towards a Precise Description (cont-d)

- Reminder: the relation \succ must be transitive.
- Similarly, the relation \sim must be transitive, symmetric, and reflexive $(y \sim y)$, i.e., be an equivalence relation.
- An alternative description: a transitive pre-ordering relation $a \succeq b \Leftrightarrow (a \succ b \lor a \sim b)$ s.t. $a \succeq b \lor b \succeq a$.
- Then, $a \sim b \Leftrightarrow (a \succeq b) \& (b \succeq a)$, and

$$a \succ b \Leftrightarrow (a \succeq b) \& (b \not\succeq a).$$

- Additional requirement:
 - -if each criterion is better,
 - then the alternative is better as well.
- Formalization: if $y_i > y'_i$ for all i, then $y \succ y'$.

35. Scale Invariance: Motivation

- Fact: quantities y_i describe completely different physical notions, measured in completely different units.
- Examples: wind velocities measured in m/s, km/h, mi/h; elevations in m, km, ft.
- Each of these quantities can be described in many different units.
- A priori, we do not know which units match each other.
- Units used for measuring different quantities may not be exactly matched.
- It is reasonable to require that:
 - if we simply change the units in which we measure each of the corresponding n quantities,
 - the relations \succ and \sim between the alternatives $y = (y_1, \ldots, y_n)$ and $y' = (y'_1, \ldots, y'_n)$ do not change.

36. Scale Invariance: Towards a Precise Description

- Situation: we replace:
 - \bullet a unit in which we measure a certain quantity q
 - by a new measuring unit which is $\lambda > 0$ times smaller.
- Result: the numerical values of this quantity increase by a factor of λ : $q \to \lambda \cdot q$.
- Example: 1 cm is $\lambda = 100$ times smaller than 1 m, so the length q = 2 becomes $\lambda \cdot q = 2 \cdot 100 = 200$ cm.
- Then, scale-invariance means that for all $y, y' \in (R^+)^n$ and for all $\lambda_i > 0$, we have
 - $y = (y_1, \dots, y_n) \succ y' = (y'_1, \dots, y'_n)$ implies $(\lambda_1 \cdot y_1, \dots, \lambda_n \cdot y_n) \succ (\lambda_1 \cdot y'_1, \dots, \lambda_n \cdot y'_n),$
 - $y = (y_1, \dots, y_n) \sim y' = (y'_1, \dots, y'_n)$ implies $(\lambda_1 \cdot y_1, \dots, \lambda_n \cdot y_n) \sim (\lambda_1 \cdot y'_1, \dots, \lambda_n \cdot y'_n).$

The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . . Uncertainty in . . . Uncertainty in System . . Symmetry Approach . . . Home Page Title Page **>>** Page 38 of 62 Go Back Full Screen Close Quit

37. Formal Description

- \bullet By a total pre-ordering relation on a set Y, we mean
 - a pair of a transitive relation \succ and an equivalence relation \sim for which,
 - for every $y, y' \in Y$, exactly one of the following relations hold: $y \succ y', y' \succ y$, or $y \sim y'$.
- We say that a total pre-ordering is non-trivial if there exist y and y' for which $y \succ y'$.
- We say that a total pre-ordering relation on $(R^+)^n$ is:
 - monotonic if $y'_i > y_i$ for all i implies $y' \succ y$;
 - continuous if
 - * whenever we have a sequence $y^{(k)}$ of tuples for which $y^{(k)} \succeq y'$ for some tuple y', and
 - * the sequence $y^{(k)}$ tends to a limit y,
 - * then $y \succeq y'$.

Theorem. Every non-trivial monotonic scale-inv. continuous total pre-ordering relation on $(R^+)^n$ has the form:

$$y' = (y'_1, \dots, y'_n) \succ y = (y_1, \dots, y_n) \Leftrightarrow \prod_{i=1}^n (y'_i)^{\alpha_i} > \prod_{i=1}^n y_i^{\alpha_i};$$

$$y' = (y'_1, \dots, y'_n) \sim y = (y_1, \dots, y_n) \Leftrightarrow \prod_{i=1}^n (y'_i)^{\alpha_i} = \prod_{i=1}^n y_i^{\alpha_i},$$

for some constants $\alpha_i > 0$.

Comment: Vice versa,

- for each set of values $\alpha_1 > 0, \ldots, \alpha_n > 0$,
- the above formulas define a monotonic scale-invariant continuous pre-ordering relation on $(R^+)^n$.

Quantitative...
The Notion of Utility

Traditional Approach: . . .

Need for Distributed . . .

Privacy-Motivated . . .

Uncertainty Leads to . . .

Uncertainty in . . .

Uncertainty in System...

Symmetry Approach...

Home Page

Title Page

Page 40 of 62

Go Back

Full Screen

Close

39. Practical Conclusion

- Situation:
 - we need to select an alternative;
 - each alternative is characterized by characteristics y_1, \ldots, y_n .
- Traditional approach:
 - we assign the weights w_i to different characteristics;
 - we select the alternative with the largest value of $\sum_{i=1}^{n} w_i \cdot y_i.$
- New result: it is better to select an alternative with the largest value of $\prod_{i=1}^{n} y_i^{w_i}$.
- Equivalent reformulation: select an alternative with the largest value of $\sum_{i=1}^{n} w_i \cdot \ln(y_i)$.

40. Multi-Agent Cooperative Decision Making

- How to describe preferences: for each participant P_i , we can determine the utility $u_{ij} \stackrel{\text{def}}{=} u_i(A_j)$ of all A_j .
- Question: how to transform these utilities into a reasonable group decision rule?
- Solution: was provided by another future Nobelist John Nash.
- Nash's assumptions:
 - symmetry,
 - independence from irrelevant alternatives, and
 - scale invariance under replacing function $u_i(A)$ with an equivalent function $a \cdot u_i(A)$,

41. Nash's Bargaining Solution (cont-d)

- Nash's assumptions (reminder):
 - symmetry,
 - independence from irrelevant alternatives, and
 - scale invariance.
- Nash's result:
 - the only group decision rule satisfying all these assumptions
 - is selecting an alternative A for which the product $\prod_{i=1}^{n} u_i(A)$ is the largest possible.
- Comment. the utility functions must be "scaled" s.t. the "status quo" situation $A^{(0)}$ has utility 0:

$$u_i(A) \to u'_i(A) \stackrel{\text{def}}{=} u_i(A) - u_i(A^{(0)}).$$

The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . . Uncertainty in . . . Uncertainty in System . . Symmetry Approach . . . Home Page Title Page **>>** Page 43 of 62 Go Back Full Screen Close Quit

42. Interval-Valued Utilities and Interval-Valued Subjective Probabilities

- To feasibly elicit the values $\underline{u}(A)$ and $\overline{u}(A)$, we:
 - 1) starting $w/[\underline{u}, \overline{u}] = [0, 1]$, bisect an interval s.t. $L(\underline{u}) < A < L(\overline{u})$ until we find u_0 s.t. $A \parallel L(u_0)$;
 - 2) by bisecting an interval $[\underline{u}, u_0]$ for which $L(\underline{u}) < A \parallel L(u_0)$, we find $\underline{u}(A)$;
 - 3) by bisecting an interval $[u_0, \overline{u}]$ for which $L(u_0) \parallel A < L(\overline{u})$, we find $\overline{u}(A)$.
- Similarly, when we estimate the probability of an event E:
 - we no longer get a single value ps(E);
 - we get an *interval* $[\underline{ps}(E), \overline{ps}(E)]$ of possible values of probability.
- By using bisection, we can feasibly elicit the values ps(E) and $\overline{ps}(E)$.

The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . Uncertainty in . . . Uncertainty in System . . Symmetry Approach . . Home Page Title Page **>>** Page 44 of 62 Go Back Full Screen Close Quit

43. Decision Making Under Interval Uncertainty

- Situation: for each possible decision d, we know the interval $[\underline{u}(d), \overline{u}(d)]$ of possible values of utility.
- Questions: which decision shall we select?
- Natural idea: select all decisions d_0 that may be optimal, i.e., which are optimal for some function

$$u(d) \in [\underline{u}(d), \overline{u}(d)].$$

- *Problem:* checking all possible functions is not feasible.
- Solution: the above condition is equivalent to an easier-to-check one:

$$\overline{u}(d_0) \ge \max_d \underline{u}(d).$$

- Interval computations can help in describing the range of all such d_0 .
- Remaining problem: in practice, we would like to select one decision; which one should be select?

The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . Uncertainty in . . . Uncertainty in System . . Symmetry Approach . . Home Page Title Page **>>** Page 45 of 62 Go Back Full Screen Close Quit

44. Need for Definite Decision Making

- At first glance: if $A' \parallel A''$, it does not matter whether we recommend alternative A' or alternative A''.
- \bullet Let us show that this is not a good recommendation.
- E.g., let A be an alternative about which we know nothing, i.e., $[\underline{u}(A), \overline{u}(A)] = [0, 1]$.
- In this case, A is indistinguishable both from a "good" lottery L(0.999) and a "bad" lottery L(0.001).
- Suppose that we recommend, to the user, that A is equivalent both to L(0.999) and to L(0.001).
- Then this user will feel comfortable:
 - first, exchanging L(0.999) with A, and
 - then, exchanging A with L(0.001).
- So, following our recommendations, the user switches from a very good alternative to a very bad one.

45. Need for Definite Decision Making (cont-d)

- The above argument does not depend on the fact that we assumed complete ignorance about A:
 - every time we recommend that the alternative A is "equivalent" both to L(p) and to L(p') (p < p'),
 - we make the user vulnerable to a similar switch from a better alternative L(p') to a worse one L(p).
- Thus, there should be only a single value p for which A can be reasonably exchanged with L(p).
- In precise terms:
 - we start with the utility interval $[\underline{u}(A), \overline{u}(A)]$, and
 - we need to select a single u(A) for which it is reasonable to exchange A with a lottery L(u).
- How can we find this value u(A)?

46. Decisions under Interval Uncertainty: Hurwicz Optimism-Pessimism Criterion

- Reminder: we need to assign, to each interval $[\underline{u}, \overline{u}]$, a utility value $u(\underline{u}, \overline{u}) \in [\underline{u}, \overline{u}]$.
- *History:* this problem was first handled in 1951, by the future Nobelist Leonid Hurwicz.
- Notation: let us denote $\alpha_H \stackrel{\text{def}}{=} u(0,1)$.
- Reminder: utility is determined modulo a linear transformation $u' = a \cdot u + b$.
- Reasonable to require: the equivalent utility does not change with re-scaling: for a > 0 and b,

$$u(a \cdot u^{-} + b, a \cdot u^{+} + b) = a \cdot u(u^{-}, u^{+}) + b.$$

• For $u^- = 0$, $u^+ = 1$, $a = \overline{u} - \underline{u}$, and $b = \underline{u}$, we get $u(\underline{u}, \overline{u}) = \alpha_H \cdot (\overline{u} - \underline{u}) + \underline{u} = \alpha_H \cdot \overline{u} + (1 - \alpha_H) \cdot \underline{u}.$

47. Hurwicz Optimism-Pessimism Criterion (cont)

- The expression $\alpha_H \cdot \overline{u} + (1 \alpha_H) \cdot \underline{u}$ is called *optimism*-pessimism criterion, because:
 - when $\alpha_H = 1$, we make a decision based on the most optimistic possible values $u = \overline{u}$;
 - when $\alpha_H = 0$, we make a decision based on the most pessimistic possible values u = u;
 - for intermediate values $\alpha_H \in (0, 1)$, we take a weighted average of the optimistic and pessimistic values.
- According to this criterion:
 - if we have several alternatives A', \ldots , with intervalvalued utilities $[\underline{u}(A'), \overline{u}(A')], \ldots$,
 - we recommend an alternative A that maximizes

$$\alpha_H \cdot \overline{u}(A) + (1 - \alpha_H) \cdot \underline{u}(A).$$

Which Value α_H Should We Choose? An Ar-48. gument in Favor of $\alpha_H = 0.5$

- Let us take an event E about which we know nothing.
- For a lottery L^+ in which we get A_1 if E and A_0 otherwise, the utility interval is [0, 1].
- Thus, the equiv. utility of L^+ is $\alpha_H \cdot 1 + (1 \alpha_H) \cdot 0 = \alpha_H$.
- For a lottery L^- in which we get A_0 if E and A_1 otherwise, the utility is [0,1], so equiv. utility is also α_H .
- For a complex lottery L in which we select either L^+ or L^- with probability 0.5, the equiv. utility is still α_H .
- \bullet On the other hand, in L, we get A_1 with probability 0.5 and A_0 with probability 0.5.
- Thus, L = L(0.5) and hence, u(L) = 0.5.
- So, we conclude that $\alpha_H = 0.5$.

Quantitative . . . The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . Uncertainty in . . . Uncertainty in System... Symmetry Approach . . Home Page Title Page Page 50 of 62 Go Back

Full Screen

>>

Close

- Suppose that an action has n possible outcomes S_1, \ldots, S_n , with utilities $[\underline{u}(S_i), \overline{u}(S_i)]$, and probabilities $[\underline{p}_i, \overline{p}_i]$.
- We know that each alternative is equivalent to a simple lottery with utility $u_i = \alpha_H \cdot \overline{u}(S_i) + (1 \alpha_H) \cdot \underline{u}(S_i)$.
- We know that for each i, the i-th event is equivalent to $p_i = \alpha_H \cdot \overline{p}_i + (1 \alpha_H) \cdot \underline{p}_i$.
- Thus, this action is equivalent to a situation in which we get utility u_i with probability p_i .
- The utility of such a situation is equal to $\sum_{i=1}^{n} p_i \cdot u_i$.
- Thus, the equivalent utility of the original action is equivalent to

$$\sum_{i=1}^{n} \left(\alpha_{H} \cdot \overline{p}_{i} + (1 - \alpha_{H}) \cdot \underline{p}_{i} \right) \cdot \left(\alpha_{H} \cdot \overline{u}(S_{i}) + (1 - \alpha_{H}) \cdot \underline{u}(S_{i}) \right).$$

Quantitative...

The Notion of Utility

Traditional Approach: . . .

Need for Distributed...

Privacy-Motivated...

Uncertainty Leads to...

Uncertainty in . . .

Uncertainty in System...

Symmetry Approach . . .

Home Page
Title Page

Page 51 of 62

Go Back

Full Screen

Close

- Let us consider a situation in which, with some prob. p, we gain a utility u, else we get 0.
- The expected utility is $p \cdot u + (1 p) \cdot 0 = p \cdot u$.
- Suppose that we only know the intervals $[\underline{u}, \overline{u}]$ and $[\underline{p}, \overline{p}]$.
- The equivalent utility u_k (k for know) is $u_k = (\alpha_H \cdot \overline{p} + (1 \alpha_H) \cdot p) \cdot (\alpha_H \cdot \overline{u} + (1 \alpha_H) \cdot \underline{u}).$
- If we only know that utility is from $[\underline{p} \cdot \underline{u}, \overline{p} \cdot \overline{u}]$, then: $u_d = \alpha_H \cdot \overline{p} \cdot \overline{u} + (1 - \alpha_H) \cdot \underline{p} \cdot \underline{u} \ (d \text{ for } d\text{on't know}).$
- \bullet Here, additional knowledge decreases utility:

$$u_d - u_k = \alpha_H \cdot (1 - \alpha_H) \cdot (\overline{p} - p) \cdot (\overline{u} - \underline{u}) > 0.$$

• (This is maybe what the Book of Ecclesiastes meant by "For with much wisdom comes much sorrow"?) Quantitative . . .

The Notion of Utility

Traditional Approach: . . .

Need for Distributed . . .

Privacy-Motivated...

Uncertainty Leads to...

Uncertainty in . . .

Uncertainty in System...

Symmetry Approach . . .

Home Page

Title Page

Page 52 of 62

Go Back

Full Screen

Close

51. Beyond Interval Uncertainty: Partial Info about Probabilities

- Frequent situation:
 - in addition to \mathbf{x}_i ,
 - we may also have partial information about the probabilities of different values $x_i \in \mathbf{x}_i$.
- An *exact* probability distribution can be described, e.g., by its cumulative distribution function

$$F_i(z) = \operatorname{Prob}(x_i \le z).$$

- A partial information means that instead of a single cdf, we have a class \mathcal{F} of possible cdfs.
- p-box (Scott Ferson):
 - for every z, we know an interval $\mathbf{F}(z) = [\underline{F}(z), \overline{F}(z)];$
 - we consider all possible distributions for which, for all z, we have $F(z) \in \mathbf{F}(z)$.

The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . Uncertainty in . . . Uncertainty in System... Symmetry Approach . . . Home Page Title Page **>>** Page 53 of 62 Go Back Full Screen Close Quit

- *Problem:* there are many ways to represent a probability distribution.
- *Idea:* look for an objective.
- Objective: make decisions $E_x[u(x,a)] \to \max_a$.
- Case 1: smooth u(x).
- Analysis: we have $u(x) = u(x_0) + (x x_0) \cdot u'(x_0) + \dots$
- Conclusion: we must know moments to estimate E[u].
- Case of uncertainty: interval bounds on moments.
- Case 2: threshold-type u(x) (e.g., regulations).
- Conclusion: we need cdf $F(x) = \text{Prob}(\xi \leq x)$.
- Case of uncertainty: p-box $[\underline{F}(x), \overline{F}(x)]$.

Quantitative . . . The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . . Uncertainty in . . . Uncertainty in System... Symmetry Approach . . . Home Page Title Page **>>** Page 54 of 62

Go Back

Full Screen

Close

• Reminder: if we set utility of status quo to 0, then we select an alternative A that maximizes

$$u(A) = \prod_{i=1}^{n} u_i(A).$$

- Case of interval uncertainty: we only know intervals $[\underline{u}_i(A), \overline{u}_i(A)].$
- First idea: find all A_0 for which $\overline{u}(A_0) \ge \max_A \underline{u}(A)$, where

$$[\underline{u}(A), \overline{u}(A)] \stackrel{\text{def}}{=} \prod_{i=1}^{n} [\underline{u}_i(A), \overline{u}_i(A)].$$

- Second idea: maximize $u^{\text{equiv}}(A) \stackrel{\text{def}}{=} \prod_{i=1}^{n} u_i^{\text{equiv}}(A)$.
- Interesting aspect: when we have a conflict situation (e.g., in security games).

Quantitative . . . The Notion of Utility Traditional Approach: . . Need for Distributed . . . Privacy-Motivated . . . Uncertainty Leads to . . Uncertainty in . . . Uncertainty in System... Symmetry Approach . . . Home Page Title Page **>>**

Page 55 of 62

Go Back

Full Screen

Close

- Traditional interval computations:
 - we know the intervals X_1, \ldots, X_n containing x_1, \ldots, x_n ;
 - we know that a quantity z depends on $x = (x_1, \ldots, x_n)$:

$$z = f(x_1, \dots, x_n);$$

- we want to find the range Z of possible values of z:

$$Z = \left[\min_{x \in X} f(x), \max_{x \in X} f(x) \right].$$

- Control situations:
 - the value z = f(x, u) also depends on the control variables $u = (u_1, \ldots, u_m)$;
 - we want to find Z for which, for every $x_i \in X_i$, we can get $z \in Z$ by selecting appropriate $u_j \in U_j$:

$$\forall x \,\exists u \, (z = f(x, u) \in Z).$$

Quantitative . . .

The Notion of Utility

Traditional Approach: . . .

Need for Distributed . . .

Privacy-Motivated . . .

Uncertainty Leads to . .

Uncertainty in . . .

Uncertainty in System...

Symmetry Approach . . .

Home Page

Title Page

Page 56 of 62

Go Back

Full Screen

Close

- Reminder: we want $\forall x \in X \exists u \in U (f(x, u) \in Z)$.
- There is a logical difference between intervals X and U.
- The property $f(x, u) \in Z$ must hold
 - for all possible values $x_i \in X_i$, but
 - $for some values u_j \in U_j$.
- We can thus consider pairs of intervals and quantifiers (modal intervals):
 - each original interval X_i is a pair $\langle X_i, \forall \rangle$, while
 - controlled interval is a pair $\langle U_j, \exists \rangle$.
- We can treat the resulting interval Z as the range defined over modal intervals:

$$Z = f(\langle X_1, \forall \rangle, \dots, \langle X_n, \forall \rangle, \langle U_1, \exists \rangle, \dots, \langle U_m, \exists \rangle).$$

Quantitative...
The Notion of Utility

Traditional Approach: . . .

Need for Distributed . . .

Privacy-Motivated . . .

Uncertainty in System...

Symmetry Approach . . .

Home Page

Title Page

Page 57 of 62

Go Back

Full Screen

Close

56. Even Further Beyond Optimization

- In more complex situations, we need to go beyond control.
- For example, in the presence of an adversary, we want to make a decision x such that:
 - for every possible reaction y of an adversary,
 - we will be able to make a next decision x' (depending on y)
 - so that after every possible next decision y' of an adversary,
 - the resulting state s(x, y, x', y') will be in the desired set:

$$\forall y \,\exists x' \,\forall y' \, (s(x, y, x', y') \in S).$$

• In this case, we arrive at general Shary's classes.

• Due to scale-invariance, for every $y_1, \ldots, y_n, y'_1, \ldots,$ y'_n , we can take $\lambda_i = \frac{1}{y_i}$ and conclude that

$$y_n$$
, we can take $x_i = \frac{1}{y_i}$ and conclude that $(y_1', \dots, y_n') \sim (y_1, \dots, y_n) \Leftrightarrow \left(\frac{y_1'}{y_1}, \dots, \frac{y_n'}{y_n}\right) \sim (1, \dots, 1).$

- Thus, to describe the equivalence relation \sim , it is sufficient to describe $\{z = (z_1, ..., z_n) : z \sim (1, ..., 1)\}.$
- Similarly,

$$(y_1',\ldots,y_n') \succ (y_1,\ldots,y_n) \Leftrightarrow \left(\frac{y_1'}{y_1},\ldots,\frac{y_n'}{y_n}\right) \succ (1,\ldots,1).$$

- Thus, to describe the ordering relation \succ , it is sufficient to describe the set $\{z = (z_1, ..., z_n) : z \succ (1, ..., 1)\}.$
- Similarly, it is also sufficient to describe the set

$$\{z=(z_1,\ldots,z_n):(1,\ldots,1)\succ z\}.$$

Quantitative . . . The Notion of Utility

Traditional Approach: . .

Need for Distributed . . .

Privacy-Motivated . . .

Uncertainty Leads to . .

Uncertainty in . . .

Uncertainty in System... Symmetry Approach . . .

Title Page

Home Page

>>

Page 59 of 62

Go Back

Full Screen

Close

$$S_{\sim} = \{Z : z = (\exp(Z_1), \dots, \exp(Z_n)) \sim (1, \dots, 1)\},\$$

$$S_{\succ} = \{Z : z = (\exp(Z_1), \dots, \exp(Z_n)) \succ (1, \dots, 1)\};$$

$$S_{\prec} = \{Z : (1, ..., 1) \succ z = (\exp(Z_1), ..., \exp(Z_n))\}.$$
• Since the pre-ordering relation is total, for Z , either

- Lemma: S_{\sim} is closed under addition:

 - $Z \in S_{\sim}$ means $(\exp(Z_1), \ldots, \exp(Z_n)) \sim (1, \ldots, 1);$
 - due to scale-invariance, we have

$$(\exp(Z_1 + Z_1'), \ldots) = (\exp(Z_1) \cdot \exp(Z_1'), \ldots) \sim (\exp(Z_1'), \ldots);$$
• also, $Z' \in S_{\sim}$ means $(\exp(Z_1'), \ldots) \sim (1, \ldots, 1);$

- since \sim is transitive,

$$(\exp(Z_1 + Z_1'), \ldots) \sim (1, \ldots) \text{ so } Z + Z' \in S_{\sim}.$$

$$p(Z_n) \sim (1,\ldots,1)\},$$

 $S_{\prec} = \{Z : (1, \dots, 1) \succ z = (\exp(Z_1), \dots, \exp(Z_n))\}.$

Since the pre-ordering relation is total, for
$$Z$$
, either $Z \in S_{\sim}$ or $Z \in S_{\sim}$ or $Z \in S_{\sim}$.

$$\exp(Z_n)$$
 $\sim (1, \dots, 1)$:

Quantitative . . .

The Notion of Utility

Traditional Approach: . .

Need for Distributed . . . Privacy-Motivated . . .

Uncertainty Leads to . .

Uncertainty in System...

Symmetry Approach . . . Home Page

Title Page

>>

Uncertainty in . . .

Page 60 of 62

Go Back

Full Screen

Close

- Reminder: the set S_{\sim} is closed under addition;
- Similarly, S_{\prec} and S_{\succ} are closed under addition.
- Conclusion: for every integer q > 0:
 - if $Z \in S_{\sim}$, then $q \cdot Z \in S_{\sim}$;
 - $\text{ if } Z \in S_{\succ}, \text{ then } q \cdot Z \in S_{\succ};$
 - if $Z \in S_{\prec}$, then $q \cdot Z \in S_{\prec}$.
- Thus, if $Z \in S_{\sim}$ and $q \in N$, then $(1/q) \cdot Z \in S_{\sim}$.
- We can also prove that S_{\sim} is closed under $Z \to -Z$:
 - $Z = (Z_1, ...) \in S_{\sim}$ means $(\exp(Z_1), ...) \sim (1, ...);$
 - by scale invariance, $(1,...) \sim (\exp(-Z_1),...)$, i.e., $-Z \in S_{\sim}$.
- Similarly, $Z \in S_{\succ} \Leftrightarrow -Z \in S_{\prec}$.
- So $Z \in S_{\sim} \Rightarrow (p/q) \cdot Z \in S_{\sim}$; in the limit, $x \cdot Z \in S_{\sim}$.

Quantitative...

The Notion of Utility

Traditional Approach: . . .

Need for Distributed...

Privacy-Motivated . . .

Uncertainty Leads to . .

Uncertainty in . . .

Uncertainty in System...

Symmetry Approach . . .

Home Page

Title Page

Page 61 of 62

Go Back

Full Screen

Close

Close

60. Proof of Symmetry Result: Final Part

- Reminder: S_{\sim} is closed under addition and multiplication by a scalar, so it is a linear space.
- Fact: S_{\sim} cannot have full dimension n, since then all alternatives will be equivalent to each other.
- Fact: S_{\sim} cannot have dimension < n-1, since then:
 - we can select an arbitrary $Z \in S_{\prec}$;
 - connect it $w/-Z \in S_{\succ}$ by a path γ that avoids S_{\sim} ;
 - due to closeness, $\exists \gamma(t^*)$ in the limit of S_{\succ} and S_{\prec} ;
 - thus, $\gamma(t^*) \in S_{\sim}$ a contradiction.
- Every (n-1)-dim lin. space has the form $\sum_{i=1}^{n} \alpha_i \cdot Y_i = 0$.
- Thus, $Y \in S_{\succ} \Leftrightarrow \sum \alpha_i \cdot Y_i > 0$, and $y \succ y' \Leftrightarrow \sum \alpha_i \cdot \ln(y_i/y_i') > 0 \Leftrightarrow \prod y_i^{\alpha_i} > \prod y_i'^{\alpha_i}.$

Quantitative...
The Notion of Utility
Traditional Approach:...
Need for Distributed...
Privacy-Motivated...
Uncertainty Leads to...
Uncertainty in...
Uncertainty in System...
Symmetry Approach...

Home Page

Title Page

Page 62 of 62

Go Back

Full Screen

Close