Why Sugeno λ -Measures

Hung T. Nguyen^{1,2}, Vladik Kreinovich³ Joe Lorkowski³, and Saiful Abu³

¹Department of Mathematical Sciences New Mexico State University Las Cruces, NM 88003 ²Faculty of Economics Chiang Mai University, Thailand hunguyen@nmsu.edu

³Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, Texas 79968
sabu@miners.utep.edu, vladik@utep.edu
lorkowski@computer.org

1. Traditional Approach: Probability Measures

- Traditionally, uncertainty has been described by probabilities.
- The probability p(A) of a set A is usually interpreted as the frequency with which events from the set A occur.
- In this interpretation:
 - if we have two disjoint sets A and B with $A \cap B = \emptyset$,
 - then the frequency $p(A \cup B)$ with which the events from A or B happen
 - is equal to the sum of the frequencies p(A) and p(B) corresponding to each of these sets.
- This property of probabilities measures is known as additivity: if $A \cap B = \emptyset$, then

$$p(A \cup B) = p(A) + p(B).$$

2. Need to Go Beyond Probability Measures

- To adequately describe expert knowledge, we often need to go beyond probabilities.
- In general, instead of probabilities, we have the expert's degree of confidence g(A) in A.
- Clearly, $g(\emptyset) = 0$ and g(X) = 1.
- Also, clearly, the larger the set, the more confident we are that an event from this set will occur:

$$A \subseteq B$$
 implies $g(A) \le g(B)$.

• Functions g(A) that satisfy these properties are known as fuzzy measures.

3. Sugeno λ -Measures

- M. Sugeno introduced a specific class of fuzzy measures which are now known as Sugeno λ -measures.
- If we know g(A) and g(B) for two disjoint sets, we can still reconstruct the degree $g(A \cup B)$.
- For Sugeno measure,

$$g(A \cup B) = g(A) + g(B) + \lambda \cdot g(A) \cdot g(B).$$

- When $\lambda = 0$, this formula transforms into additivity.
- \bullet Sugeno λ -measures are among the most widely used and fuzzy measures.

4. Problem

- The practical success of Sugeno measures is somewhat paradoxical:
 - The main point of using fuzzy measures is to go beyond probability measures.
 - On the other hand, Sugeno λ -measures are, in some reasonable sense, equivalent to probabilities.
- In this talk, we explain this seeming paradox: from the computational viewpoint,
 - processing Sugeno measure directly is much more computationally efficient
 - than using a reduction to a probability measure.
- We also analyze which other probability-equivalent fuzzy measures have this property.

5. Sugeno λ -Measure is Mathematically Equivalent to a Probability Measure

- In Sugeno measure, if we know a = g(A) and b = g(B) for $A \cap B = \emptyset$, then we can compute $c = g(A \cup B)$ as $c = a + b + \lambda \cdot a \cdot b$.
- We would like to find a 1-1 function f(x) for which $p(A) \stackrel{\text{def}}{=} f^{-1}(g(A))$ is a probability measure.
- This means that if $c = a + b + \lambda \cdot a \cdot b$, then c' = a' + b', where $a' = f^{-1}(a)$, $b' = f^{-1}(b)$, and $c' = f^{-1}(c)$.
- For $\lambda > 0$, this holds for $f(x') = \frac{1}{\lambda} \cdot (\exp(x') 1)$.
- For $\lambda < 0$, this holds for $f(x') = \frac{1}{|\lambda|} \cdot (1 \exp(-x'))$.
- So, a Sugeno λ -measure is indeed equivalent to a probability measure.

Traditional Approach: . . .

Need to Go Beyond . . .

Sugeno λ-Measures

Problem

Sugeno λ -Measure is . . .

How to Explain the...

Processing Sugeno...

Which Fuzzy...

Main Result

Home Page

Title Page

Page 6 of 17

Go Back

Full Screen

Close

6. Processing Sugeno Measures Is More Computationally Efficient than Using Probabilities

- If we know g(A) and g(B), then we can compute $g(A \cup B) = g(A) + g(B) + \lambda \cdot g(A) \cdot g(B).$
- This computation uses only hardware supported (thus, fast) + and \cdot . Alternative is to:
 - compute $p(A) = f^{-1}(g(A))$ and $p(B) = f^{-1}(g(B))$;
 - add these probabilities $p(A \cup B) = p(A) + p(B)$;
 - finally, re-scale this resulting probability back into degree-of-confidence: $g(A \cup B) = f(p(A \cup B))$.
- In this approach, we compute logarithm (to compute $f^{-1}(x)$) and exponential function (to compute f(x)).
- ullet These computations are much slower than + and \cdot .
- Thus, the direct use of Sugeno measure is definitely much more computationally efficient.

Need to Go Beyond . . . Sugeno λ-Measures Problem Sugeno λ -Measure is . . . Processing Sugeno... How to Explain the . . . Which Fuzzy . . . Main Result Home Page Title Page **>>** Page 7 of 17 Go Back Full Screen Close Quit

Traditional Approach: . . .

7. How to Explain the Use of Sugeno Measure in Probabilistic Terms

- We are interested in expert estimates of probabilities of different sets of events.
- It is known that expert estimates of the probabilities are biased:
 - the expert's subjective estimates g(A) of the corresponding probabilities p(A)
 - are equal to g(A) = f(p(A)) for an appropriate rescaling function f(A).
- In this case, a natural ideas seems to be:
 - to re-scale all the estimates back into the probabilities: $p(A) = f^{-1}(g(A))$, and
 - to use the usual algorithms to process these probabilities.

8. Sugeno Measure in Prob. Terms (cont-d)

- If we know the expert's estimates g(A) and g(B) for $A \cap B = \emptyset$, to predict the $g(A \cup B)$, we:
 - re-scale g(A) and g(B) into probabilities:

$$p(A) = f^{-1}(g(A))$$
 and $p(B) = f^{-1}(g(B))$;

- compute $p(A \cup B) = p(A) + p(B)$; and
- estimate $g(A \cup B)$ as $g(A \cup B) = f(p(A \cup B))$.
- For some biasing functions f(x), it is computationally more efficient
 - not to re-scale into probabilities,
 - but to store and process the original values g(A).
- This is, in effect, the essence of applications of a Sugeno λ -measure are about.

9. Which Fuzzy Measures Have This Property

- If we know the expert's estimates a = g(A) and b = g(B) for $A \cap B = \emptyset$, to predict the $g(A \cup B)$, we:
 - re-scale a and b into probabilities:

$$p(A) = f^{-1}(a)$$
 and $p(B) = f^{-1}(b)$;

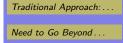
- compute $p(A \cup B) = f^{-1}(a) + f^{-1}(b)$; and
- estimate $g(A \cup B)$ as $F(a, b) = f(f^{-1}(a) + f^{-1}(b))$.
- One can check that F(a, b) is commutative, associative, and F(0, a) = a.
- We want to find all such F(a, b) for which direct computation is faster than this 3-stage approach.
- Computation is fast it consists of a sequence of hardware supported elementary operations: $+, -, \cdot, /$.

10. Analysis of Fuzzy Measures (cont-d)

• We are interested in functions

$$F(a,b) = f(f^{-1}(a) + f^{-1}(b)).$$

- These functions are commutative, associative, and F(0, a) = a.
- We want to find all such F(a, b) for which direct computation is faster than this 3-stage approach.
- Computation is fast it consists of a sequence of hardware supported elementary operations: $+, -, \cdot, /$.
- Functions computed by a sequence of such operations are rational fractions of polynomials.
- Thus, we look for rational commutative associative functions F(a, b) for which F(0, a) = a.



11. Main Result

- We are looking for fuzzy measures:
 - which are equivalent to probability measures, but
 - for which direct computations are faster than reductions to probabilities.
- This leads to a search for rational commutative associative functions F(a, b) for which F(0, a) = a.
- We prove that each such operation has one of the two forms:

$$F(a,b) = \frac{a+b+2B \cdot a \cdot b}{1+B^2 \cdot a \cdot b};$$

$$F(a,b) = \frac{a+b+(2B+A) \cdot a \cdot b}{1-B \cdot (B+A) \cdot a \cdot b}.$$

• For B = 0, the second formula leads to Sugeno measure.

Sugeno λ-Measures

Problem

Sugeno λ-Measure is...

Processing Sugeno...

How to Explain the...

Which Fuzzy...

Main Result

Home Page

Title Page

Go Back

Full Screen

Full Screen

Close

12. Auxiliary Result

- We look for operations for which computing F(a, b) directly is faster.
- The requirement that F(a, b) is computable by elementary arithmetic operations leads to

$$F(a,b) = \frac{a+b+2B \cdot a \cdot b}{1+B^2 \cdot a \cdot b};$$

$$F(a,b) = \frac{a+b+(2B+A)\cdot a\cdot b}{1-B\cdot (B+A)\cdot a\cdot b}.$$

- Out of elementary arithmetic operations, division is the slowest.
- Sugeno measure is the only one that does not use division and is, thus, the fastest.
- This explains why Sugeno measure is widely used.

Traditional Approach: . . . Need to Go Beyond . . . Sugeno λ-Measures Problem Sugeno λ -Measure is . . . Processing Sugeno... How to Explain the . . . Which Fuzzy . . . Main Result Home Page Title Page **>>** Page 13 of 17 Go Back Full Screen

Close

13. Proof

- A classification of all possible rational commutative associative F(a, b) is known (Brawley et al. 2001).
- For each such F(a,b), there exists a fractional-linear t(a) for which $F(a,b)=t^{-1}(t(a)+t(b))$ or

$$F(a,b) = t^{-1}(t(a) + t(b) + t(a) \cdot t(b)).$$

- The requirement F(0, a) = a implies t(0) = 0.
- A general fractional-linear function has the form

$$t(a) = \frac{p + q \cdot a}{r + s \cdot a}.$$

• The fact that t(0) = 0 implies that p = 0, so we get

$$t(a) = \frac{q \cdot a}{r + s \cdot a}.$$

Full Screen

Close

- We have shown that $t(a) = \frac{q \cdot a}{r + s \cdot a}$.
- Here, we must have $r \neq 0$, because otherwise, t(a) is a constant.
- Dividing the numerator and the denominator of t(a) by r, we get:

$$t(a) = \frac{A \cdot a}{1 + B \cdot a}$$
, where $A \stackrel{\text{def}}{=} \frac{q}{r}$, $B \stackrel{\text{def}}{=} \frac{s}{r}$.

• We know that $F(a,b) = t^{-1}(t(a) + t(b))$ or

$$F(a,b) = t^{-1}(t(a) + t(b) + t(a) \cdot t(b)).$$

• Substituting this expression for t(a) into the above formulas for F(a,b), we get the desired expressions.

Traditional Approach: . . .

Need to Go Beyond . . .

Sugeno λ-Measures

ugeno X-IVIeasures

Problem
Sugeno λ-Measure is...

Processing Sugeno...

How to Explain the...
Which Fuzzy...

Main Result

Train Tresure

Home Page
Title Page

Page 15 of 17

Go Back

Full Screen

Full Screen

Close

15. Acknowledgments

- This work was supported in part:
 - by the Faculty of Economics of Chiang Mai University and
 - by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence), and
 - DUE-0926721.
- The authors are thankful to George J. Klir and Michio Sugeno for valuable discussions.

16. References

- J. V. Brawley, S. Gao, and D. Mills, "Associative rational functions in two variables", In: D. Jungnickel and H. Niederreiter, *Finite Fields and Applications 2001*, Proceedings of the Fifth International Conference on Finite Fields and Applications F_q5 , Augsburg, Germany, August 2–6, 1999, Springer, Berlin, Heidelberg, 2001, pp. 43–56.
- D. Kahneman, *Thinking, Fast and Slow*, Farrar, Straus, and Giroux, New York, 2011.
- M. Sugeno, Theory of Fuzzy Integrals and Its Applications, Ph.D. Dissertation, Tokyo Institute of Technology, 1974.

