How to Estimate Expected Shortfall When Probabilities Are Known with Interval or Fuzzy Uncertainty

Christian Servin¹, Hung T. Nguyen^{2,3}, and Vladik Kreinovich⁴

 ¹Information Technology Department, El Paso Community College El Paso, TX 79915, USA, cservin@gmail.com
 ²Department of Mathematical Sciences, New Mexico State University Las Cruces, NM 88003, USA, hunguyen@nmsu.edu
 ³Faculty of Economics, Chiang Mai University, Thailand
 ⁴Department of Computer Science, University of Texas at El Paso El Paso, Texas 79968, USA, vladik@utep.edu

1. How to Gauge Risk

- Engineers estimate the largest strength s_0 of historic floods and other natural disasters.
- Then they design the buildings so that they can withstand such disasters.
- However, there is always a possibility that the disaster strength S exceeds s_0 .
- Examples: hurricane Katrina, Fukushima, etc.
- We cannot guarantee that $S \leq s_0$.
- So, we should at least require $p = \text{Prob}(S > s_0) \le p_0$ for some small p_0 .
- E.g., for manned space flights, NASA used $p_0 = 10^{-3}$.
- For reliability of a cell in a computer memory, we need $p_0 \ll 10^{-9}$: else one of the cells will be always faulty.

How to Gauge Risk

How to Estimate ES_p :...

In Practice, We Only...

How to Gauge Risk...

Algorithm: Case of...

Algorithm: Case of . . .

Analysis of the Problem

When I_T Attains Its...

When I_T Attains Its...

Home Page

Title Page

Page 2 of 17

Go Back

Full Screen

Close

2. How to Gauge Risk (cont-d)

- It is also desirable to know how much damage will come, on average, if the threshold x_0 is exceeded.
- For each possible value S of the corresponding disaster strength, we estimate the corresponding damage X.
- Let x_p denote the damage corresponding to s_0 , then

$$S \ge x_0$$
 if and only if $X \ge x_p$.

• Thus, we need to know the *expected shortfall*

$$\mathrm{ES}_p \stackrel{\mathrm{def}}{=} E[X \,|\, X \ge x_p].$$

- The values x_p and ES_p is how we gauge the risk.
- Similar two measures are used in finance to describe the risk that an investment would result in a big loss.

How to Estimate ES_p :... In Practice, We Only . . . How to Gauge Risk . . . Algorithm: Case of . . . Algorithm: Case of ... Analysis of the Problem When IT Attains Its . . . When I_T Attains Its.. Home Page Title Page **>>** Page 3 of 17 Go Back Full Screen Close Quit

3. How to Estimate ES_p : Ideal Case

- In the ideal case, we know the probability distribution that describes possible values of the damage X.
- A distribution is usually described by its *cumulative* distribution function (cdf) $F(x) \stackrel{\text{def}}{=} \text{Prob}(X \leq x)$.
- The probability p_0 of exceeding the threshold x_p is equal to $1 F(x_p)$, so $F(x_p) = 1 p_0 = p$.
- For each p, the value x_p for which $F(x_p) = p$ is known as the p-th quantile:
 - for p = 0.5, we get the median;
 - for p = 0.25 and p = 0.75, we get quartiles, etc.
- The conditional expectation can then be computed as the ratio $ES_p = \frac{\int_{x_p}^{\infty} x \, dF(x)}{1-p}$.

How to Estimate ES_p :... In Practice, We Only . . . How to Gauge Risk . . . Algorithm: Case of . . . Algorithm: Case of ... Analysis of the Problem When IT Attains Its . . . When I_T Attains Its.. Home Page Title Page **>>** Page 4 of 17 Go Back Full Screen Close Quit

In Practice, We Only Have Partial Information About the Probabilities

- In practice, we rarely know the exact values of all the probabilities:
 - instead of the exact values F(x) corresponding to different values x,
 - we only know an interval $[\underline{F}(x), \overline{F}(x)]$ that contains the actual (unknown) value F(x).
- Such interval-valued cdf is known as a probability box (p-box, for short).
- More generally:
 - we may have several intervals $[\underline{F}(x), \overline{F}(x)]$;
 - these intervals correspond to different degrees of certainty $\alpha \in [0,1]$.
- \bullet So, F(x) is a sequence of embedded intervals, i.e., in effect, a fuzzy number.

How to Estimate ES_p :...

In Practice, We Only . . . How to Gauge Risk . . .

How to Gauge Risk

Algorithm: Case of . . .

Algorithm: Case of . . . Analysis of the Problem

When IT Attains Its . . . When I_T Attains Its...

> Home Page Title Page

>>

Page 5 of 17

Go Back

Full Screen

Close

- For different cdfs $F(x) \in [F(x), F(x)]$ within a p-box, we get different quantiles x_n :
 - the smallest value x_n corresponds to the largest values F(x) of the cdf; while
 - the largest value x_p corresponds to the smallest values F(x) of the cdf.
- Thus, possible values of the quantile x_p form an interval $[\underline{x}_p, \overline{x}_p]$ in which $\overline{F}(\underline{x}_p) = \underline{F}(\overline{x}_p) = p$.
- To handle the fuzzy case, we take into account that:
 - for all $y = f(x_1, \ldots, x_n)$ with fuzzy x_i ,
 - the alpha-cut ${}^{\alpha}\mathbf{y} \stackrel{\text{def}}{=} \{y : \mu(y) \geq \alpha\}$ of the result is equal to the range

$$f({}^{\alpha}\mathbf{x}_1,\ldots,{}^{\alpha}\mathbf{x}_n)=\{f(x_1,\ldots,x_n):x_1\in{}^{\alpha}\mathbf{x}_1,\ldots,x_n\in{}^{\alpha}\mathbf{x}_n(\alpha)\}.$$

How to Estimate ES_p :...

In Practice, We Only . . .

How to Gauge Risk . . .

Algorithm: Case of . . .

How to Gauge Risk

Algorithm: Case of . . . Analysis of the Problem

When I_T Attains Its...

When I_T Attains Its.. Home Page

Title Page

Page 6 of 17

Go Back

Full Screen

Close

6. Need to Gauge Risk Under Interval (p-Box) and Fuzzy Uncertainty (cont-d)

- So, to find the α -cut of the quantile x_p , we can:
 - compute the interval $[\underline{x}_p, \overline{x}_p]$
 - when each F(x) belongs to the corresponding α -cut of the fuzzy number $\mathbf{F}(x)$.
- This straightforward computation is possible since the dependence of x_p on F(x) is monotonic.
- So, the largest values of x_p is attained for smallest F(x), and vice versa.
- For ES_p , there is no such clear monotonicity.
- We thus need a new algorithm for estimating ES_p under interval and fuzzy uncertainty.

7. What We Do

- We provide efficient algorithms for computing ES_p under interval (p-box) and fuzzy uncertainty.
- From the algorithmic viewpoint:
 - the problem of computing the expected shortfall under fuzzy uncertainty
 - can be reduced to the case of interval (p-box) uncertainty.
- Thus, we only need an algorithm for the interval (p-box) uncertainty.

8. Algorithm: Case of Interval Uncertainty

- We are given a p-box $[\underline{F}(x), \overline{F}(x)]$ and a probability p.
- We want to find the range $[\underline{\mathrm{ES}}_p, \overline{\mathrm{ES}}_p]$ of possible values of ES_p when cdf F(x) is in this p-box.
- First, we compute $\overline{\mathrm{ES}}_p$ as ES_p corresponding to $F(x) = \underline{F}(x)$, i.e., as the ratio:

$$\frac{1}{1-p} \cdot \int_{\overline{x}_p}^{\infty} x \, d\underline{F}(x), \text{ where } \overline{x}_p \stackrel{\text{def}}{=} (\underline{F})^{-1}(p).$$

• Then, we compute $\underline{\mathrm{ES}}_p$ as ES_p corresponding to $F(x) = \overline{F}(x)$, i.e., as the ratio:

$$\frac{1}{1-p} \cdot \int_{\underline{x}_p}^{\infty} x \, d\overline{F}(x), \text{ where } \underline{x}_p \stackrel{\text{def}}{=} (\overline{F})^{-1}(p).$$

9. Algorithm: Case of Fuzzy Uncertainty

- We have a fuzzy-valued cdf $\mathbf{F}(x)$, i.e., we have the α cuts ${}^{\alpha}\mathbf{F}(x) = [{}^{\alpha}\underline{F}(x), {}^{\alpha}\overline{F}(x)].$
- We are also given a probability p.
- We want to to compute the α -cuts ${}^{\alpha}\mathbf{ES}_p = [{}^{\alpha}\underline{\mathrm{ES}}_p, {}^{\alpha}\overline{\mathrm{ES}}_p]$ of the expected shortfall \mathbf{ES}_p .
- First, we compute ${}^{\alpha}\underline{\mathrm{ES}}_p$ as ES_p corresponding to ${}^{\alpha}\underline{F}(x)$, i.e., as the ratio

$$\frac{1}{1-p} \cdot \int_{\alpha \overline{x}_p}^{\infty} x \, d^{\alpha} \underline{F}(x), \text{ where } {}^{\alpha} \overline{x}_p \stackrel{\text{def}}{=} ({}^{\alpha} \underline{F})^{-1}(p).$$

• Then, we compute ${}^{\alpha}\overline{\mathrm{ES}}_p$ as ES_p corresponding to ${}^{\alpha}\overline{F}(x)$, i.e., as the ratio

$$\frac{1}{1-p} \cdot \int_{\alpha_{x_p}}^{\infty} x \, d^{\alpha} \overline{F}(x), \text{ where } {}^{\alpha}\underline{x}_p \stackrel{\text{def}}{=} ({}^{\alpha}\overline{F})^{-1}(p).$$

How to Gauge Risk $\label{eq:howto_stimate} How to Estimate ES_p:\dots$ In Practice, We Only . . . $\label{eq:howto_Gauge} How to Gauge Risk \dots$

Algorithm: Case of . . .

Algorithm: Case of . . .

Analysis of the Problem When I_T Attains Its...

When I_T Attains Its...

Home Page
Title Page

Page 10 of 17

Go Back

Full Screen

Close

10. Acknowledgment

- This work was supported in part:
 - by the Faculty of Economics of Chiang Mai University, and
 - by the National Science Foundation grants:
 - * HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - * DUE-0926721.
- The authors are thankful to Scott Ferson and Paul Embrechts for valuable discussions.

How to Estimate ES_p :... In Practice, We Only . . . How to Gauge Risk . . . Algorithm: Case of . . . Algorithm: Case of . . . Analysis of the Problem When IT Attains Its . . . When I_T Attains Its... Home Page Title Page **>>** Page 11 of 17 Go Back Full Screen Close Quit

11. Analysis of the Problem

- We have $\mathrm{ES}_p = \frac{1}{1-n} \cdot I$, where $I \stackrel{\mathrm{def}}{=} \int_{x_p}^{\infty} x \, dF(x)$; so:
 - ES_p attains its smallest possible value \underline{ES}_p when I attains its smallest possible value \underline{I} ;
 - ES_p attains its largest possible value $\overline{\mathrm{ES}}_p$ when I attains its largest possible value \overline{I} .
- \bullet The integral I has an infinite upper bound.
- This integral can be thus represented as a limit of integrals I_T with a finite upper bound T when $T \to \infty$:

$$I = \lim_{T \to \infty} I_T$$
, where $I_T \stackrel{\text{def}}{=} \int_{x_T}^T x \, dF(x)$.

• Thus, for very large T, we have $I \approx I_T$.

How to Estimate ES_p :... In Practice, We Only . . . How to Gauge Risk . . . Algorithm: Case of . . . Algorithm: Case of ... Analysis of the Problem When I_T Attains Its... When I_T Attains Its... Home Page Title Page **>>** Page 12 of 17 Go Back Full Screen Close Quit

12. Analysis of the Problem (cont-d)

• $I_T = \int_{x_n}^T x \, dF(x)$ can be integrated by part:

$$I_T = x \cdot F(x)|_{x_p}^T - \int_{x_p}^T F(x) \, dx =$$

$$T \cdot F(T) - x_p \cdot F(x_p) - \int_{x_p}^T F(x) dx.$$

- For large T, we have F(T) practically equal to $\lim_{T\to\infty} F(T) = 1$, so $T\cdot F(T) = T$.
- By definition of a quantile x_p , we have $F(x_p) = p$, so

$$I_T = T - x_p \cdot p - \int_{x_n}^T F(x) \, dx.$$

How to Gauge Risk

How to Estimate ES_p :...

In Practice, We Only...

How to Gauge Risk...

Algorithm: Case of...

Algorithm: Case of...

Analysis of the Problem

Analysis of the Problem When I_T Attains Its...

When I_T Attains Its...

Title Page

Page 13 of 17

Go Back

Full Screen

Close

Close

- Let $F^{\max}(x)$ be a cdf for which I_T is the largest, and let x_p^{\max} be the corresponding value of x_p .
- For fixed x_p , the integral I_T is a decreasing function of the values F(x).
- Thus, I_T is the largest when all F(x) are the smallest.
- We have two limitations on the values F(x) for $x \ge x_p$:
 - $\underline{F}(x) \le F(x) \le \overline{F}(x)$ from a given p-box;
 - $F(x) \ge p$ from $F(x_p) = p$ and monotonicity of F(x).
- These constraints $\underline{F}(x) \leq F(x) \leq \overline{F}(x)$ and $F(x) \geq p$ can be equivalently described by a single constraint

$$\max(\underline{F}(x), p) \le F(x) \le \overline{F}(x).$$

Januta Estimata ES

How to Gauge Risk

How to Estimate ES_p :...
In Practice, We Only...

How to Gauge Risk...

Algorithm: Case of ...

Algorithm: Case of ...

Analysis of the Problem

When I_T Attains Its...

When I_T Attains Its...

Home Page

Title Page

Page 14 of 17

Go Back

Full Screen

Close

When I_T Attains Its Largest Value?

- Thus, the smallest possible values of F(x) correspond to $F(x) = \max(F(x), p)$.
- When $\underline{F}(x) \geq p$, we have $\max(\underline{F}(x), p) = \underline{F}(x)$ and hence F(x) = F(x).
- The equality $\underline{F}(x) = p$ is equivalent to $x = \overline{x}_p$, thus the condition $\underline{F}(x) \geq p$ is equivalent to $x \geq \overline{x}_p$.
- When $\underline{F}(x) < p$, i.e., when $x < \overline{x}_p$, then F(x) = p; so:

$$\int_{x_p^{\text{max}}}^T F(x) \, dx = \int_{x_p^{\text{max}}}^{\overline{x}_p} p \, dx + \int_{\overline{x}_p}^T \underline{F}(x) \, dx =$$

$$(\overline{x}_p - x_p^{\max}) \cdot p + \int_{\overline{x}_p}^T \underline{F}(x) dx$$
, and

$$I_T = T - x_p^{\max} \cdot p - (\overline{x}_p - x_p^{\max}) \cdot p - \int_{\overline{x}_p}^T \underline{F}(x) dx.$$

How to Estimate ES_p :...

How to Gauge Risk

In Practice, We Only . . .

How to Gauge Risk . . .

Algorithm: Case of . . . Algorithm: Case of ...

Analysis of the Problem

When I_T Attains Its... When I_T Attains Its...

Home Page

Title Page

Page 15 of 17

Go Back

Full Screen

Close

15. When I_T Attains Its Largest Value: Result

• We have shown that

$$I_T = T - x_p^{\max} \cdot p - (\overline{x}_p - x_p^{\max}) \cdot p - \int_{\overline{x}_p}^T \underline{F}(x) \, dx.$$

• The two terms $x_p^{\max} \cdot p$ and $(\overline{x}_p - x_p^{\max}) \cdot p$ can be easily combined into a single term $\overline{x}_p \cdot p$, so

$$I_T = T - \overline{x}_p \cdot p - \int_{\overline{x}_p}^T \underline{F}(x) dx.$$

- Here, \overline{x}_p is the quantile corresponding to the lower endpoint $\underline{F}(x)$ of the p-box.
- So, we can conclude that the above expression is the value of the I_T corresponding to $F(x) = \underline{F}(x)$.
- Thus, the largest value of the integral I_T and hence, of ES_p is attained when $F(x) = \underline{F}(x)$.

How to Gauge Risk

How to Estimate ES_p :...

In Practice, We Only...

How to Gauge Risk...

Algorithm: Case of...

Analysis of the Problem

Algorithm: Case of . . .

When I_T Attains Its...

When I_T Attains Its...

Home Page

Title Page

Page 16 of 17

Go Back

Full Screen

Close

16. When I_T Attains Its Smallest Value?

- Let x_p^{\min} be the value corresponding to the cdf $F^{\min}(x)$ for which this integral is the largest possible.
- This means, in particular, that:
 - among all cdfs F(x) with the same value of the p-th quantile x_p^{\min} (i.e., for which $F(x_p^{\min}) = p$),
 - this particular cdf $F^{\min}(x)$ leads to the smallest possible value of the integral I_T .
- I_T is a decreasing function of the values F(x).
- Thus, this integral is the smallest when all the values F(x) are the largest.
- Under the limitations $\max(\underline{F}(x), p) \leq F(x) \leq \overline{F}(x)$, the largest possible values are $F(x) = \overline{F}(x)$.
- Thus, the smallest value of the integral I_T and hence, of ES_p is attained when $F(x) = \overline{F}(x)$.

How to Gauge Risk
How to Estimate ES_p :..
In Practice, We Only ...
How to Gauge Risk ...
Algorithm: Case of ...
Algorithm: Case of ...
Analysis of the Problem
When I_T Attains Its ...
When I_T Attains Its ...

Home Page

Title Page

Page 17 of 17

Go Back

Full Screen

Close