# How to Take Into Account Model Inaccuracy When Estimating the Uncertainty of the Result of Data Processing

Vladik Kreinovich, Olga Kosheleva, Andrzej Pownuk, and Rodrigo Romero

Cyber-ShARE Center
University of Texas at El Paso
El Paso, Texas 79968, USA
vladik@utep.edu, olgak@utep.edu
ampownuk@utep.edu, raromero2@utep.edu



# 1. Bounds on Unwanted Processes: An Important Part of Engineering Specifications

- An engineering system performs certain tasks.
- However, it also generates undesirable side effects: noise, vibration, heat, stress, etc.
- The size q of each such effect should not exceed a certain pre-defined threshold t.
- It is therefore important to check that  $q \leq t$  in all possible situations.
- Let  $p_1, \ldots, p_n$  be parameters that describe different situations: wind speed, load, Young module.
- For each of these parameters, we know the interval of possible values  $[p_i, \overline{p}_i] = [\widetilde{p}_i \Delta_i, \widetilde{p}_i + \Delta_i]$ .



#### 2. Bounds on Unwanted Processes (cont-d)

- We want to make sure that  $q \leq t$  for all possible combinations of  $p_i \in [p_i, \overline{p}_i]$ .
- Even if we consider extreme cases, when  $p_i = \underline{p}_i$  or  $p_i = \overline{p}_i$ , we get  $2^n$  cases.
- For large n, it is not feasible to physically check all these cases.
- Thus, we need to rely on computer simulations.



#### 3. Formulation of the Problem

- There exist techniques for checking that  $q \leq t$  for all  $p_i \in [\underline{p}_i, \overline{p}_i]$ .
- However, these techniques assume that we have an *exact* model of the system.
- In many cases, we only have an *approximate* description information of the system.
- We show that in such cases, the existing techniques overestimate uncertainty.
- We also show that a proper modification of these techniques drastically decreases this overestimation.



# 4. How to Check Specifications When We Have an Exact Model of a System: Reminder

- Let us assume that we know the exact dependence  $q = q(p_1, \ldots, p_n)$ .
- Usually, deviations  $\Delta p_i = p_i \widetilde{p}_i$  from nominal values  $\widetilde{p}_i$  are reasonably small.
- In such situations, we can linearize the dependence:

$$q(p_1, \ldots, p_n) = \widetilde{q} + \sum_{i=1}^n c_i \cdot \Delta p_i$$
, where

$$\widetilde{q} \stackrel{\text{def}}{=} q(\widetilde{x}_1, \dots, \widetilde{x}_n) \text{ and } c_i \stackrel{\text{def}}{=} \frac{\partial q}{\partial p_i}.$$

• The largest value  $\overline{q}$  is attained when  $\Delta p_i = \pm \Delta_i$ :

$$\overline{q} = \widetilde{q} + \sum_{i=1}^{n} |c_i| \cdot \Delta_i.$$



# 5. What If We Have an Exact Model (cont-d)

- Here,  $\overline{q} = \widetilde{q} + \sum_{i=1}^{n} |c_i| \cdot \Delta_i$ .
- When the expression for  $q(p_i)$  is implicit, we cannot explicitly compute  $c_i$ .
- In this case, we can use numerical differentiation

$$c_i = \frac{q(\widetilde{p}_1, \dots, \widetilde{p}_{i-1}, \widetilde{p}_i + h_i, \widetilde{p}_{i+1}, \dots, \widetilde{p}_n) - \widetilde{q}}{h_i}.$$

• Then, for  $h_i = \Delta_i$ , we get  $\overline{q} = \widetilde{q} + \sum_{i=1}^n |q_i - \widetilde{q}|$ , where

$$q_i \stackrel{\text{def}}{=} q(\widetilde{p}_1, \dots, \widetilde{p}_{i-1}, \widetilde{p}_i + \Delta_i, \widetilde{p}_{i+1}, \dots, \widetilde{p}_n).$$

Bounds on Unwanted... Formulation of the . . . How to Check . . . Faster Algorithm For Many Practical . . . Taking Model . . . How to Get Better . . . Experimental Testing: Home Page Title Page **>>** Page 6 of 23 Go Back Full Screen

Close

## 6. Resulting Algorithm

- We know: an algorithm  $q(p_1, \ldots, p_n)$ , a threshold t, and values  $\widetilde{p}_i$  and  $\Delta_i$ .
- We need to check: whether  $q(p_1, ..., p_n) \leq t$  for all  $p_i \in [\widetilde{p}_i \Delta_i, \widetilde{p}_i + \Delta_i]$ .
- Algorithm:
  - 1) first, we compute  $\widetilde{q} = q(\widetilde{p}_1, \dots, \widetilde{p}_n)$ ;
  - 2) then, for each i from 1 to n, we compute

$$q_i = q(\widetilde{p}_1, \dots, \widetilde{p}_{i-1}, \widetilde{p}_i + \Delta_i, \widetilde{p}_{i+1}, \dots, \widetilde{p}_n);$$

- 3) after that, we compute  $\overline{q} = \widetilde{q} + \sum_{i=1}^{n} |q_i \widetilde{q}|$ ;
- 4) finally, we check whether  $\overline{q} \leq t$ .



## 7. Possibility of a Further Speed-Up

- The above algorithm requires n+1 calls to the program that computes q.
- In many practical situations, this is too long.
- We can speed up computations if we Cauchy distribution  $\rho(x) = \frac{1}{\pi \cdot \Delta} \cdot \frac{1}{1 + \left(\frac{x}{\Delta}\right)^2}$ .
- If  $\eta_i$  are independent Cauchy distributed with parameters  $\Delta_i$ , then  $\sum_{i=1}^n c_i \cdot \eta_i$  is also Cauchy distributed, with

$$\Delta = \sum_{i=1}^{n} |c_i| \cdot \Delta_i.$$

• Thus, we can find  $\Delta$  by using the following algorithm.



# 8. Faster Algorithm

- Algorithm:
  - 1) first, for k = 1, ..., N, we simulate  $\eta_i^{(k)}$  Cauchydistributed with parameters  $\Delta_i$ ;
  - 2) for each k, we estimate  $\Delta y^{(k)} = \sum_{i=1}^{n} c_i \cdot \eta_i^{(k)}$  as

$$\Delta y^{(k)} = q(\widetilde{p}_1 + \eta_1^{(k)}, \dots, \widetilde{p}_n + \eta_n^{(k)}) - \widetilde{y};$$

- 3) based on N values  $\Delta y^{(1)}, \ldots, \Delta y^{(N)}$  which are Cauchy-distributed with parameter  $\Delta$ , we find  $\Delta$ ;
- 4) finally, we compute  $\overline{q} = \widetilde{q} + \Delta$ .
- In this algorithm, we need N+1 computations of q.
- The accuracy depends only on the sample size N and not on the number of inputs n.
- Example: N = 100 leads to 20% accuracy.
- So, for  $n \gg 200$ , this method is much faster.

Bounds on Unwanted . . Formulation of the . . . How to Check . . . Faster Algorithm For Many Practical . . . Taking Model . . . How to Get Better . . . Experimental Testing: . . . Home Page Title Page **>>** Page 9 of 23 Go Back Full Screen Close

# 9. For Many Practical Problems, We Can Achieve an Even Faster Speed-Up

- Often, once we have  $\widetilde{q} = q(\widetilde{p}_1, \dots, \widetilde{p}_n)$ , we can compute  $q(\widetilde{p}_1 + \eta_1, \dots, \widetilde{p}_n + \eta_n)$  faster than by applying q.
- For example, often,  $q(p_1, ..., p_n)$  comes from solving a system of nonlinear equations

$$F_i(q_1,\ldots,q_k,p_1,\ldots,p_n) = 0.$$

• Since  $\Delta p_i = \eta_i \ll p_i$ , we can linearize, solve the resulting easy-to-solve linear system, and get

$$\Delta q = q(\widetilde{p}_1 + \eta_1, \dots, \widetilde{p}_n + \eta_n) - \widetilde{q}.$$

- A similar simplifying linearization is possible when q comes from solving a system of nonlinear diff. eqs.
- This idea known as *local sensitivity analysis* is successfully used in many practical applications.



# 10. Taking Model Inaccuracy into Account

- We rarely know the exact dependence  $q(p_1, \ldots, p_n)$ .
- Usually, we have an approximate model  $Q(p_1, \ldots, p_n)$  with known accuracy  $\varepsilon$ :

$$|Q(p_1,\ldots,p_n)-q(p_1,\ldots,p_n)|\leq \varepsilon.$$

- We know: an algorithm  $Q(p_1, \ldots, p_n)$ , accuracy  $\varepsilon$ , threshold t, values  $\widetilde{p}_i$  and  $\Delta_i$ .
- We want: to check whether  $q(p_1, \ldots, p_n) \leq t$  for all  $p_i \in [\widetilde{p}_i \Delta_i, \widetilde{p}_i + \Delta_i]$ .
- If we use this approximate model in our estimate, we get  $\overline{Q} = \widetilde{Q} + \sum_{i=1}^{n} |Q_i \widetilde{Q}|$ .
- Here,  $|\widetilde{Q} \widetilde{q}| \leq \varepsilon$  and  $|Q_i q_i| \leq \varepsilon$ , so  $|\overline{q} \overline{Q}| \leq (2n+1) \cdot \varepsilon$ .
- Thus, we arrive at the following algorithm.

Bounds on Unwanted... Formulation of the . . . How to Check . . . Faster Algorithm For Many Practical . . . Taking Model . . . How to Get Better . . . Experimental Testing: Home Page Title Page **>>** Page 11 of 23 Go Back Full Screen Close Quit

### 11. Resulting Algorithm

- We know: an algorithm  $Q(p_1, \ldots, p_n)$ , accuracy  $\varepsilon$ , threshold t, values  $\widetilde{p}_i$  and  $\Delta_i$ .
- We want: to check whether  $q(p_1, \ldots, p_n) \leq t$  for all  $p_i \in [\widetilde{p}_i \Delta_i, \widetilde{p}_i + \Delta_i]$ .
- Algorithm:
  - 1) compute  $\widetilde{Q} = Q(\widetilde{p}_1, \dots, \widetilde{p}_n)$  and  $Q_i = Q(\widetilde{p}_1, \dots, \widetilde{p}_{i-1}, \widetilde{p}_i + \Delta_i, \widetilde{p}_{i+1}, \dots, \widetilde{p}_n).$
  - 2) compute  $B = \widetilde{Q} + \sum_{i=1}^{n} |Q_i \widetilde{Q}| + (2n+1) \cdot \varepsilon;$
  - 3) check whether  $B \leq t$ .
- Problem: when n is large, then, even for reasonably small inaccuracy  $\varepsilon$ , the value  $(2n+1) \cdot \varepsilon$  is large.
- What we do: we show how we can get better estimates for  $\tilde{q}$ .

Bounds on Unwanted . . . Formulation of the . . . How to Check . . . Faster Algorithm For Many Practical . . . Taking Model . . . How to Get Better . . . Experimental Testing: Home Page Title Page **>>** Page 12 of 23 Go Back Full Screen Close

#### 12. How to Get Better Estimates: Idea

- One possible source of model inaccuracy is discretization (e.g., FEM).
- When we select a different combination of parameters, we get an *unrelated* value of inaccuracy.
- So, let's consider approx. errors  $\Delta q \stackrel{\text{def}}{=} Q(p_1, \dots, p_n) q(p_1, \dots, p_n)$  as independent random variables.
- What is a probability distribution for these random variables? We know that  $\Delta q \in [-\varepsilon, \varepsilon]$ .
- We do not have any reason to assume that some values from this interval are more probable than others.
- So, it is reasonable to assume that all the values are equally probable: a uniform distribution.
- For this uniform distribution, the mean is 0, and the standard deviation is  $\sigma = \frac{\varepsilon}{\sqrt{3}}$ .



# 13. How to Get a Better Estimate for $\tilde{q}$

- In our main algorithm, we apply the computational model Q to n+1 different tuples.
- Let's also compute  $M \stackrel{\text{def}}{=} Q(\widetilde{p}_1 \Delta_1, \dots, \widetilde{p}_n \Delta_n)$ .
- In linearized case,  $\widetilde{q} + \sum_{i=1}^{n} q_i + m = (n+2) \cdot \widetilde{q}$ , so  $\widetilde{q} = \frac{1}{n+2} \cdot \left(\widetilde{q} + \sum_{i=1}^{n} q_i + m\right)$ , and we can estimate  $\widetilde{q}$  as

$$\widetilde{Q}_{\text{new}} = \frac{1}{n+2} \cdot \left( \widetilde{Q} + \sum_{i=1}^{n} Q_i + m \right).$$

• Here,  $\Delta \widetilde{q}_{\text{new}} = \frac{1}{n+2} \cdot \left( \Delta \widetilde{q} + \sum_{i=1}^{n} \Delta q_i + \Delta m \right)$ , so its variance is  $\sigma^2 \left[ \widetilde{Q}_{\text{new}} \right] = \frac{\varepsilon^2}{3 \cdot (n+2)} \ll \frac{\varepsilon^2}{3} = \sigma^2 \left[ \widetilde{Q} \right]$ .

Bounds on Unwanted . . .

Formulation of the...

How to Check...

Faster Algorithm

For Many Practical . . .

Taking Model . . .

How to Get Better...

Experimental Testing: . . .

Home Page

Title Page

**44 >>** 

Page 14 of 23

Go Back

Full Screen

Close

# 14. Let Us Use $\widetilde{Q}_{\text{new}}$ When Estimating $\overline{q}$

- Let us compute  $\overline{Q}_{\text{new}} = \widetilde{Q}_{\text{new}} + \sum_{i=1}^{n} |Q_i \widetilde{Q}_{\text{new}}|$ .
- Here, when  $s_i \in \{-1, 1\}$  are the signs of  $q_i \widetilde{q}$ , we get:

$$\overline{q} = \widetilde{q} + \sum_{i=1}^{n} s_i \cdot (q_i - \widetilde{q}) = \left(1 - \sum_{i=1}^{n} s_i\right) \cdot \widetilde{q} + \sum_{i=1}^{n} s_i \cdot q_i.$$

• Thus,  $\Delta \overline{q}_{\text{new}} = \left(1 - \sum_{i=1}^{n} s_i\right) \cdot \Delta \widetilde{q}_{\text{new}} + \sum_{i=1}^{n} s_i \cdot \Delta q_i$ , so

$$\sigma^2 = \left(1 - \sum_{i=1}^n s_i\right)^2 \cdot \frac{\varepsilon^2}{3 \cdot (n+2)} + \sum_{i=1}^n \frac{\varepsilon^2}{3}.$$

• Here,  $|s_i| \le 1$ , so  $\left|1 - \sum_{i=1}^n s_i\right| \le n + 1$ , and

$$\sigma^2 \le \frac{\varepsilon^2}{3} \cdot (2n+1).$$

Bounds on Unwanted . . .

Formulation of the . . .

How to Check...

Faster Algorithm

For Many Practical . . .

Taking Model . . .

How to Get Better...

Experimental Testing: . . .

Home Page

Title Page

(4 **)** 

**←** 

Page 15 of 23

Go Back

Full Screen

Close

# 15. Using $\widetilde{Q}_{\text{new}}$ (cont-d)

- We have  $\Delta \overline{q}_{\text{new}} = \left(1 \sum_{i=1}^{n} s_i\right) \cdot \Delta \widetilde{q}_{\text{new}} + \sum_{i=1}^{n} s_i \cdot \Delta q_i$ .
- Due to the Central Limit Theorem,  $\Delta \overline{q}_{\text{new}}$  is  $\approx$  normal.
- We know that  $\sigma^2 \leq \frac{\varepsilon^2}{3} \cdot (2n+1)$ .
- Thus, with certainty depending on  $k_0$ , we have

$$\overline{q} \leq \overline{Q}_{\text{new}} + k_0 \cdot \sigma \leq \overline{Q}_{\text{new}} + k_0 \cdot \frac{\varepsilon}{\sqrt{3}} \cdot \sqrt{2n+1}$$
:

- with certainty 95% for  $k_0 = 2$ ,
- with certainty 99.9% for  $k_0 = 3$ , etc.
- Here, inaccuracy grows as  $\sqrt{2n+1}$ .
- This is much better than in the traditional approach, where it grows  $\sim 2n + 1$ .

Bounds on Unwanted...

Formulation of the . . .

How to Check...

Faster Algorithm

For Many Practical . . .

Taking Model . . .

How to Get Better...

Experimental Testing: . . .

Home Page

Title Page

**←** →

4

Page 16 of 23

Go Back

Full Screen

Close

# 16. Resulting Algorithm

- We know:  $Q(p_1, \ldots, p_n)$ ,  $\varepsilon$ , t,  $\widetilde{p}_i$  and  $\Delta_i$ .
- We want: to check that  $q(p_1, ..., p_n) \leq t$  for all  $p_i \in [\widetilde{p}_i \Delta_i, \widetilde{p}_i + \Delta_i]$ .
- Algorithm:

1) compute 
$$\widetilde{Q} = Q(\widetilde{p}_1, \dots, \widetilde{p}_n),$$

$$M = Q(\widetilde{p}_1 - \Delta_1, \dots, \widetilde{p}_n - \Delta_n)$$
, and

$$Q_i = Q(\widetilde{p}_1, \dots, \widetilde{p}_{i-1}, \widetilde{p}_i + \Delta_i, \widetilde{p}_{i+1}, \dots, \widetilde{p}_n);$$

2) compute 
$$\widetilde{Q}_{\text{new}} = \frac{1}{n+2} \cdot \left( \widetilde{Q} + \sum_{i=1}^{n} Q_i + M \right)$$
 and

$$b = \widetilde{Q}_{\text{new}} + \sum_{i=1}^{n} \left| Q_i - \widetilde{Q}_{\text{new}} \right| + k_0 \cdot \sqrt{2n+1} \cdot \frac{\varepsilon}{\sqrt{3}};$$

3) check whether  $b \leq t$ .

Bounds on Unwanted . . .

Formulation of the . . .

How to Check . . .

Faster Algorithm

For Many Practical . . .

Taking Model . . .

How to Get Better...

Experimental Testing: . . .

Home Page

Title Page





Page 17 of 23

Go Back

Full Screen

Close

# 17. A Similar Improvement Is Possible for the Cauchy Method

 $\bullet$  In the Cauchy method, we compute Q and the values

$$Y^{(k)} = Q(\widetilde{p}_1 + \eta_1^{(k)}, \dots, \widetilde{p}_n + \eta_n^{(k)}).$$

• We can then compute the improved estimate for  $\widetilde{q}$ , as:

$$\widetilde{Q}_{\text{new}} = \frac{1}{N+1} \cdot \left( \widetilde{Q} + \sum_{k=1}^{N} Y^{(k)} \right).$$

• We can now use this improved estimate when estimating the differences  $\Delta y^{(k)}$ : namely, we compute

$$Y^{(k)} - \widetilde{Q}_{\text{new}}$$
.



# 18. Experimental Testing: Seismic Inverse Problem in Geophysics

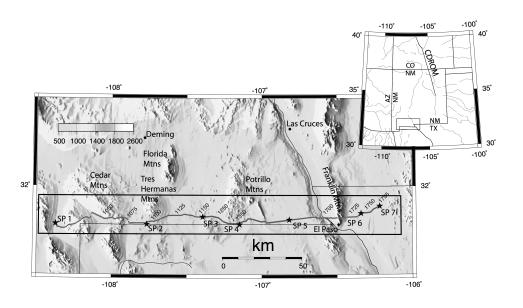
- Problem: reconstruct the velocity of sound  $v_i$  at different spatial locations and at different depths.
- What we know: the travel-times  $t_j$  of a seismic signal from the set-up explosion to seismic stations.
- Hole's iterative algorithm:
  - we start with geology-motivated values  $v_i^{(1)}$ ;
  - based on the current approximation  $v_i^{(k)}$ , we estimate the travel times  $t_i^{(k)}$ ;

- update 
$$v_i$$
:  $\frac{1}{v_i^{(k+1)}} = \frac{1}{v_i^{(k)}} + \frac{1}{n_i} \cdot \sum_j \frac{t_j - t_j^{(k)}}{L_j}$ .

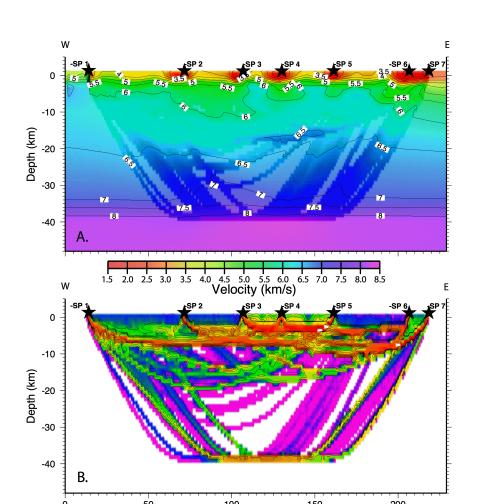
• Using  $Q_{\text{new}}$  decreased the inaccuracy  $\sigma$ , on average, by 15%;  $\sigma$  increased only in one case (only by 7%).



# 19. Case Study: Seismic Inverse Problem in the Geosciences



Bounds on Unwanted . . . Formulation of the . . . How to Check . . . Faster Algorithm For Many Practical . . . Taking Model . . . How to Get Better... Experimental Testing: . Home Page Title Page **>>** Page 20 of 23 Go Back Full Screen Close



Bounds on Unwanted . . . Formulation of the . . . How to Check . . . Faster Algorithm For Many Practical . . . Taking Model . . . How to Get Better... Experimental Testing: . . Home Page Title Page **>>** Page 21 of 23 Go Back Full Screen

Close

## 20. Can We Further Improve the Accuracy?

- The inaccuracy  $Q \neq q$  is caused by using elements of finite size h.
- This inaccuracy is proportional to h.
- If we decrease h to h', we thus need  $K \stackrel{\text{def}}{=} \frac{h^3}{(h')^3}$  more cells, so we need K times more computations.
- Thus, the accuracy decreases as  $\sqrt[3]{K}$ .
- New idea: select K small vectors  $\left(\Delta_1^{(k)}, \ldots, \Delta_n^{(k)}\right)$  which add up to 0, and estimate  $\widetilde{q}$  as

$$Q_K(p_1,\ldots,p_n) = \frac{1}{K} \cdot \sum_{k=1}^K Q\left(p_1 + \Delta_1^{(k)},\ldots,p_n + \Delta_n^{(k)}\right).$$

• Averaging K independent random errors decreases the inaccuracy by a factor of  $\sqrt{K}$ , much faster than  $\sqrt[3]{K}$ .



#### 21. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence), and
- DUE-0926721.

Bounds on Unwanted Formulation of the . . . How to Check . . . Faster Algorithm For Many Practical . . . Taking Model . . . How to Get Better... Experimental Testing: . . Home Page Title Page 44 Page 23 of 23 Go Back Full Screen Close