Computing with Words: Towards a New Tuple-Based Formalization

Olga Kosheleva, Vladik Kreinovich Ariel Garcia, Felipe Jovel, Luis A. Torres Escobedo University of Texas at El Paso El Paso, Texas 79968, USA contact email vladik@utep.edu

Thavatchai Ngamsantivong King Mongkut's Univ. of Technology North Bangkok, Thailand

Need to Use Words Need for Data Processing Need for Computing . . . From a Words-Related Resulting Fuzzy-Based . . A Seemingly Natural . . Main Idea Main Proposition: For... Examples Home Page **>>** Page 1 of 16 Go Back Full Screen Close Quit

1. Need to Use Words

- Often, to describe height etc., we use words such as "small", "medium", "high", etc.
- If we only use the selected words w_1, \ldots, w_n , we get a rather crude description of the quantity.
- A more accurate description may include several words, with degrees associated with different words.
- Example: rather short, but closer to medium height.
- We can describe this by specifying degrees d_i to which the quantity fits each word w_i .
- Then, our opinion of each value is described by a tuple of degrees $d = (d_1, \ldots, d_n)$.

2. Need for Data Processing

- \bullet Often, we are interested in the value of a physical quantity y which is difficult to measure directly.
- For example, we are interested in tomorrow's temperature.
- In such situations, a usual approach is:
 - find easier-to-estimate quantities x_1, \ldots, x_m related to y by a known dependence $y = f(x_1, \ldots, x_m)$, and
 - to use the estimates of x_i to compute the estimate for y.
- This computation of y based on x_1, \ldots, x_m is known as data processing.

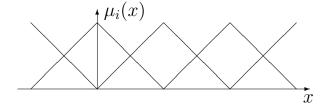
3. Need for Computing With Words

- When the estimates for x_j are given in the form of tuples d, we face the following problem:
 - we know the tuples $d^{(j)} = \left(d_1^{(j)}, \dots, d_n^{(j)}\right)$ which describes our knowledge about each input x_i ;
 - we want to describe the resulting knowledge about y in a similar tuple form.
- In particular:
 - we have quantities x_1 and x_2 characterized by the tuples $d^{(1)}$ and $d^{(1)}$;
 - we want to compute tuples corresponding to x_1+x_2 , x_1-x_2 , $x_1 \cdot x_2$, etc.
- In general, instead of computing with numbers, we should be able to compute with words (L. Zadeh).

4. How to Represent the Original Words

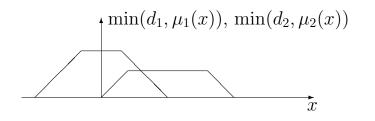
- A natural way to represent the original words in the computer-understandable form is to use fuzzy logic.
- Usually, the corresponding membership functions $\mu_i(x)$ are triangular, and different functions differ by a shift.
- In precise terms, for some some starting point s and step h, we have

$$\mu_i(x) = \max\left(0, 1 - \frac{|x - (s + i \cdot h)|}{h}\right):$$



5. From a Words-Related Tuple Representation to a Membership Function

- A tuple $d = (d_1, \ldots, d_n)$ represents a value x if one of the following conditions hold:
 - the quantity q is characterized by the word w_1 , and x satisfies the property described by this word, ...
 - the quantity q is characterized by the word w_n , and x satisfies the property described by this word.
- If we use min for "and" and max for "or", we get $\mu_d(x) = \max(\min(d_1, \mu_1(x)), \dots, \min(d_n, \mu_n(x))).$



Need to Use Words Need for Data Processing Need for Computing . . . From a Words-Related . . Resulting Fuzzy-Based . . . A Seemingly Natural . . . Main Idea Main Proposition: For . . . Examples Home Page Title Page **>>** Page 6 of 16 Go Back Full Screen Close Quit

6. Resulting Fuzzy-Based Formalization of Computing with Words

- We know the tuples $d^{(1)}$ and $d^{(2)}$ describing the two quantities x_1 and x_2 ; then:
 - first, we generate membership functions $\mu^{(1)}(x_1)$, $\mu^{(2)}(x_2)$ corresponding to the tuples $d^{(1)}$, $d^{(2)}$;
 - then, we use Zadeh's extension principle to compute the membership f-n $\mu(x)$ corr. to $y = f(x_1, x_2)$;
 - finally, we generate the tuple d corresponding to the resulting membership function $\mu(x)$.
- To implement this idea, we need to generate a tuple corresponding to a given membership function.

7. A Seemingly Natural Idea and Its Limitations

- We look for the degree d_i to which it's possible that:
 - a quantity described by a membership function $\mu(x)$
 - is in agreement with w_i .
- This means that *some* value x is in agreement with the membership function and with the word w_i .
- ullet If we use min for "and" and max for "or", we get

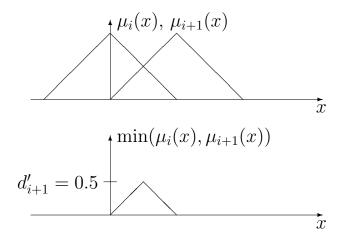
$$d_i' = \max_{x}(\min(\mu(x), \mu_i(x))).$$

- Example: we start with the word w_i , i.e., with the tuple $d = (0, \ldots, 0, 1, 0, \ldots, 0)$.
- Then, for f(x) = x, we would like to get d back.

8. A Seemingly Natural Idea and Its Limitations (cont-d)

- We start with the word w_i : d = (0, ..., 0, 1, 0, ..., 0).
- We compute $d'_i = \max_x(\min(\mu(x), \mu_i(x)))$, and get

$$d'_i = (0, \dots, 0, 0.5, 1, 0.5, 0 \dots, 0) \neq d$$
:

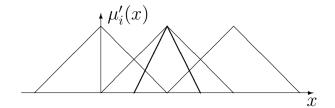


Need to Use Words Need for Data Processing Need for Computing . . . From a Words-Related . . Resulting Fuzzy-Based . . A Seemingly Natural . . . Main Idea Main Proposition: For . . . Examples Home Page Title Page **>>** Page 9 of 16 Go Back Full Screen Close Quit

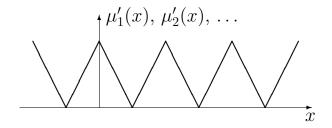
9. Main Idea

- Problem: membership f-s $\mu_i(x)$ and $\mu_{i+1}(x)$ intersect.
- Solution: remove the intersecting parts, i.e., take

$$\mu'_i(x) = \max(0, \mu_i(x) - \max(\mu_{i-1}(x), \mu_{i+1}(x)))$$
:



• The reduced functions $\mu'_i(x)$ no longer overlap:



Need to Use Words Need for Data Processing Need for Computing . . . From a Words-Related . . Resulting Fuzzy-Based . . A Seemingly Natural . . . Main Idea Main Proposition: For... Examples Home Page Title Page **>>** Page 10 of 16 Go Back Full Screen Close Quit

10. Main Idea (cont-d)

• Instead of the original functions $\mu_i(x)$, we compute the reduced functions

$$\mu_i'(x) = \max(0, \mu_i(x) - \max(\mu_{i-1}(x), \mu_{i+1}(x))).$$

• Similarly, instead of the membership function $\mu(x)$, we compute the reduced function

$$\mu'(x) = \max(0, \mu(x) - \max(\mu_{i-1}(x), \mu_{i+1}(x))).$$

• Then, we compute the degrees based on these reduced functions, as

$$d_i' = \max_{x} (\min(\mu'(x), \mu_i'(x))).$$

Need to Use Words Need for Data Processing Need for Computing . . . From a Words-Related . . Resulting Fuzzy-Based . . A Seemingly Natural . . . Main Idea Main Proposition: For . . . Examples Home Page Title Page **>>**

Page 11 of 16

Go Back

Full Screen

Close

Quit

- Let $\mu_i(x)$ be a sequence of triangular functions.
- Let $d = (d_1, \ldots, d_n)$ be a tuple of numbers $d_i \in [0, 1]$.
- Let $\mu_d(x)$ be the corresponding membership function

$$\mu_d(x) = \max(\min(d_1, \mu_1(x)), \dots, \min(d_n, \mu_n(x))).$$

- We then:
 - - compute $\mu'_i(x) \stackrel{\text{def}}{=} \max(0, \mu_i(x) \max(\mu_{i-1}(x), \mu_{i+1}(x)));$

$$\mu'(x) = \max(0, \mu_d(x) - \max(\mu_{i-1}(x), \mu_{i+1}(x))),$$

- and apply the formulas $d'_i = \max_{x}(\min(\mu'(x), \mu'_i(x)))$.
- As a result, we get $d'_i = d_i$ for all i.

Resulting Fuzzy-Based . . A Seemingly Natural . . .

Need to Use Words

Need for Data Processing

Need for Computing . . .

From a Words-Related . .

Main Idea Main Proposition: For . . .

Examples Home Page

> Title Page **>>**

Page 12 of 16

Full Screen

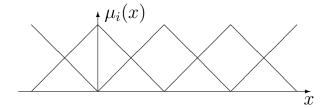
Close

Quit

Go Back

12. Beyond Triangular Membership Functions

• We formulated our Main Proposition for *triangular* membership functions.



- A similar result holds for any set of membership functions $\mu_i(x)$ for which, for some sequence of values t_i :
 - $-\mu_i(t_i) = 1$, and
 - $-\mu_i(x)$ is only different from 0 for $x \in [t_{i-1}, t_{i+1}]$.

 \bullet We know:

as follows:

- tuples $d^{(i)}$ describing different quantities x_i ;
- an algorithm $y = f(x_1, \dots, x_n)$.
- We compute a tuple d corresponding to $y = f(x_1, \ldots, x_n)$
 - first, we compute the membership functions $\mu_i(x_i)$ corresponding to the tuples $d^{(i)}$;
 - we apply Zadeh's extension principle to $\mu_i(x_i)$ to compute the membership function $\mu(y)$ for

$$y=f(x_1,\ldots,x_n);$$

- we then apply the reduced-functions formula to $\mu(y)$ and get the desired tuple d.

Need to Use Words Need for Data Processing

Need for Computing . . .

Resulting Fuzzy-Based . .

From a Words-Related . .

A Seemingly Natural . . .

Main Idea Main Proposition: For . . .

Examples

Home Page

Title Page

>>

Page 14 of 16

Go Back

Full Screen

Close

Quit

- 1. We add two words $w_{i'}$ and $w_{i''}$:
 - here, $d^{(1)} = (0, \dots, 0, 1, 0, \dots, 0)$ (1 on *i*-th place) and $d^{(2)} = (0, \dots, 0, 1, 0, \dots, 0)$ (1 on *i'*-th place);
 - we get d s.t. $d_{i'+i''} = 1$, $d_{(i'+i'')-1} = d_{(i'+i'')+1} = 0.5$, and $d_j = 0$ for all other j:

$$d = (0, \dots, 0, 0.5, 1, 0.5, 0, \dots, 0).$$

2. We subtract $w_{i'}$ and $w_{i''}$; we get a tuple with $d_{i'-i''} = 1$, $d_{(i'-i'')-1} = d_{(i'-i'')+1} = 0.5$, and $d_j = 0$ for other j:

$$d = (0, \dots, 0, 0.5, 1, 0.5, 0, \dots, 0).$$

3. A shift $f(x) = x + a \cdot h$ (0 < a < 1) of a word w_i leads to the tuple d = (0, ..., 0, 1 - a, a, 0, ..., 0).

Need for Data Processing Need for Computing . . . From a Words-Related . . Resulting Fuzzy-Based . . A Seemingly Natural . . . Main Idea Main Proposition: For . . . Examples Home Page Title Page 44 **>>** Page 15 of 16 Go Back Full Screen Close Quit

Need to Use Words

15. Acknowledgment

This work was supported in part:

- by the National Science Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721,
- by Grants 1 T36 GM078000-01 and 1R43TR000173-01 from the National Institutes of Health, and
- by a grant N62909-12-1-7039 from the Office of Naval Research.

