r-Bounded Fuzzy Measures are Equivalent to ε -Possibility Measures

Karen Richart, Olga Kosheleva, and Vladik Kreinovich

University of Texas at El Paso El Paso, TX 79968, USA karichart@miners.utep.edu, olgak@utep.edu, vladik@utep.edu

Outline Additive Measures: . . . Fuzzy Measures: Brief... Which Measures Are Which Measures Are Equivalence: Analysis... Definitions and the . . . First Auxiliary Result: . . Case of Generalized . . Home Page **>>** Page 1 of 21 Go Back Full Screen Close Quit

1. Outline

- Traditional probabilistic description of uncertainty is based on *additive* probability measures.
- To describe non-probabilistic uncertainty, it is therefore reasonable to consider *non-additive* measures.
- An important class of non-additive measures are *possibility* measures, for which $\mu(A \cup B) = \max(\mu(A), \mu(B))$.
- In this talk, we show that possibility measures are, in some sense, universal approximators:
 - for every $\varepsilon > 0$,
 - every non-additive measure which satisfies a certain reasonable boundedness property
 - is equivalent to a measure which is ε -close to a possibility measure.

2. Additive Measures: Brief Reminder

- \bullet Let X be a set called a *universal set*.
- An algebra \mathcal{A} is a non-empty class of subsets $A \subseteq X$ which is closed under complement, \cup , and \cap , i.e.:
 - if $A \in \mathcal{A}$, then its complement -A is also in \mathcal{A} ;
 - if $A \in \mathcal{A}$ and $B \in \mathcal{A}$, then $A \cup B \in \mathcal{A}$;
 - if $A \in \mathcal{A}$ and $B \in \mathcal{A}$, then $A \cap B \in \mathcal{A}$.
- An additive measure, we mean a function μ mapping sets $A \in \mathcal{A}$ to numbers $\mu(A) \geq 0$ s.t. $A \cap B = \emptyset$ implies

$$\mu(A \cup B) = \mu(A) + \mu(B).$$

- Examples: length, area, volume, probability.
- Properties: monotonicity $(A \subseteq B \text{ implies } \mu(A) \le \mu(B)),$ $\mu(\emptyset) = 0.$

Outline Additive Measures: . . . Fuzzy Measures: Brief.. Which Measures Are . . . Which Measures Are... Equivalence: Analysis. Definitions and the . . . First Auxiliary Result: . . Case of Generalized . . Home Page Title Page **>>** Page 3 of 21 Go Back Full Screen Close Quit

3. Fuzzy Measures: Brief Reminder

- A function $\mu(A)$ defined on an algebra of subsets of a universal set X is called a *fuzzy measure* if:
 - it is monotonic, i.e., $A \subseteq B$ implies $\mu(A) \le \mu(B)$, and
 - it satisfies the properties $\mu(\emptyset) = 0$ and $\mu(X) = 1$.
- A function $\mu(A)$ is called *maxitive* if for every two sets A and B, we have $\mu(A \cup B) = \max(\mu(A), \mu(B))$.
- By a *possibility measure*, we mean a maxitive fuzzy measure.

4. Which Measures Are Reasonable?

- In general, a measure $\mu(A)$ describes how important is the set A.
- The larger the measure, the more important is the set A.
- From this viewpoint:
 - if we take the union $A \cup B$ of two sets of bounded size,
 - then the size of the union cannot be arbitrarily large.
- The size of $A \cup B$ should be limited by some bound depending on the bound on $\mu(A)$ and $\mu(B)$.
- Similarly, if the sizes of A and B are sufficiently small, then the size of the union should also be small.

5. Which Measures Are Reasonable: Definition

- By a non-additive measure, we mean a function $\mu(A)$ that assigns, to each set $A \in \mathcal{A}$, a number $\mu(A) \geq 0$.
- A non-additive measure μ is r-bounded if it satisfies the following two properties:
 - for every $\Gamma > 0$, there exists a $\Delta > 0$ such that if $\mu(A) \leq \Gamma$ and $\mu(B) \leq \Gamma$, then $\mu(A \cup B) \leq \Delta$;
 - for every $\eta > 0$, there exists a $\nu > 0$ such that if $\mu(A) \leq \nu$ and $\mu(B) \leq \nu$ then $\mu(A \cup B) \leq \eta$.
- Comment: every additive measure is r-bounded, with $\Delta = 2 \cdot \Gamma$ and $\nu = \frac{\eta}{2}$.

6. Equivalence: Analysis of the Problem

- The numerical values of probabilities have observable sense.
- The probability of an event E can be defined as the limit of the frequency with which E occurs.
- In contrast, e.g., possibility values do not have direct meaning.
- The only important thing is which values are larger and which are smaller.
- This describes which events are more possible and which are less possible.
- From this viewpoint,
 - if two measures can be obtained from each other by a transformation that preserves the order,
 - such measures can be considered to be equivalent.

Additive Measures: . . . Fuzzy Measures: Brief... Which Measures Are . . . Which Measures Are... Equivalence: Analysis... Definitions and the . . . First Auxiliary Result: . . Case of Generalized . . Home Page Title Page **>>** Page 7 of 21 Go Back Full Screen Close Quit

7. Definitions and the Main Result

• Non-additive measures $\mu(A)$ and $\mu'(A)$ are called *equivalent* if there exists a 1-1 monotonic function f(x) s.t.

$$\mu'(A) = f(\mu(A))$$
 for every A.

- Let $\varepsilon > 0$ be a real number.
- A non-additive measure $\mu(A)$ is an ε -possibility measure if for every A and B:

$$\max(\mu(A),\mu(B)) \leq \mu(A \cup B) \leq (1+\varepsilon) \cdot \max(\mu(A),\mu(B)).$$

- Result: For every $\varepsilon > 0$, every r-bounded non-additive measure is equivalent to an ε -possibility measure.
- Can we strengthen this result? Is each r-bounded measure equivalent to a possibility measure?
- A simple answer is "No": any measure which is equivalent to a maxitive one is also maxitive.

Additive Measures: . . . Fuzzy Measures: Brief... Which Measures Are . . . Which Measures Are... Equivalence: Analysis... Definitions and the . . . First Auxiliary Result: . . Case of Generalized . . Home Page Title Page **>>** Page 8 of 21 Go Back Full Screen Close Quit

8. First Auxiliary Result: Possibility of Uniform Equivalence

- We proved that *each* r-bounded non-additive measure can be re-scaled into an "almost" possibility measure.
- Sometimes, we have *several* measures.
- Can we re-scale all of them into ε -possibility measures by using the same re-scaling f(x)?
- Result: For every $\varepsilon > 0$, and for every finite set of r-bounded non-additive measures $\mu_1(A), \ldots, \mu_n(A)$,
 - there exists a 1-1 function f(x) for which
 - all *n* measures $\mu'_i(A) \stackrel{\text{def}}{=} f(\mu_i(A))$ are ε -possibility measure.

9. Case of Generalized Metric

- Similarly to the fact that measures describe size, metrics describe distance.
- Usually, we considers metrics d(a, b) which satisfy the triangle inequality $d(a, c) \leq d(a, b) + d(b, c)$.
- However, it does not have to be this particular inequality. What is important is that:
 - if d(a, b) and d(b, c) are bounded by some $\Gamma > 0$,
 - then the distance d(a, c) cannot be arbitrarily large,
 - it should be limited by some bound depending on the bound on d(a, b) and d(b, c).
- Similarly:
 - if d(a,b) and d(b,c) are sufficiently small,
 - then the distance d(a, c) is also small.

10. Generalized Metric (cont-d)

- A function $d: X \times X \to R_0^+$ is called an *r-bounded* metric if it satisfies the following two properties:
 - for every $\Gamma > 0$, there exists a $\Delta > 0$ such that if $d(a,b) \leq \Gamma$ and $d(b,c) \leq \Gamma$, then $d(a,c) \leq \Delta$;
 - for every $\eta > 0$, there exists a $\nu > 0$ such that if $d(a,b) \leq \nu$ and $d(b,c) \leq \nu$ then $d(a,c) \leq \eta$.
- A function $d: X \times X \to R_0^+$ is called an *ultrametric* if $d(a,c) \le \max(d(a,b),d(b,c))$ for all a,b, and c.
- $d: X \times X \to R_0^+$ is called an ε -ultrametric if $d(a,c) \le (1+\varepsilon) \cdot \max(d(a,b),d(b,c)) \text{ for all } a,b, \text{ and } c.$

Additive Measures: . . . Fuzzy Measures: Brief . . Which Measures Are . . . Which Measures Are . . . Equivalence: Analysis. Definitions and the . . . First Auxiliary Result: . . Case of Generalized . . Home Page Title Page **>>** Page 11 of 21 Go Back Full Screen Close Quit

11. Generalized Metrics: Results

• r-bounded metrics d(a, b) and d'(a, b) are called *equivalent* if there exists a 1-1 monotonic f(x) s.t.:

$$d'(a,b) = f(d(a,b))$$
 for all a, b .

- Result: For every $\varepsilon > 0$, every r-bounded metric is equivalent to an ε -ultrametric.
- For every $\varepsilon > 0$, and for every finite set of r-bounded metrics $d_1(a, b), \ldots, d_n(a, b)$, there is a 1-1 f-n f(x) s.t.

```
d'_i(a,b) \stackrel{\text{def}}{=} f(d_i(a,b)) are \varepsilon-ultrametrics for all i.
```


12. General Result Including Measures and Metrics as Special Cases

- By a domain, we mean a set S with a partial binary operation $\circ: S \times S \to S$.
- ullet For measures, S is an algebra of sets, and \circ is the union.
- For metrics, S is the set of all pairs (a, b), and the binary operation transforms (a, b) and (b, c) into (a, c).
- By a *characteristic*, we mean a function $F: S \to R_0^+$.
- A characteristic F(x) is called *r-bounded* if:
 - $\forall \Gamma > 0 \,\exists \Delta > 0 \text{ s.t. if } F(x) \leq \Gamma, \, F(x') \leq \Gamma, \text{ and } x \circ x' \text{ is defined, then } F(x \circ x') \leq \Delta;$
 - for every $\eta > 0$, there exists a $\nu > 0$ such that if $F(x) \leq \nu$ and $F(x') \leq \nu$ then $F(x \circ x') \leq \eta$.

Additive Measures: . . . Fuzzy Measures: Brief . . Which Measures Are . . . Which Measures Are . . . Equivalence: Analysis... Definitions and the . . . First Auxiliary Result: . . Case of Generalized . . Home Page Title Page **>>** Page 13 of 21 Go Back Full Screen Close Quit

13. General Results (cont-d)

• F(x) is called an ε -maxitive if for all x and x' for which $x \circ x'$ is defined,

$$F(x \circ x') \le (1 + \varepsilon) \cdot \max(F(x), F(x')).$$

• F(x) and F'(x) are called *equivalent* if there exists a 1-1 monotonic f-n f(x) for which

$$F'(x) = f(F(x))$$
 for all $x \in S$.

- Result: for every $\varepsilon > 0$, every r-bounded characteristic is equivalent to an ε -maxitive one.
- Result: for every $\varepsilon > 0$, and for every finite set of r-bounded characteristics $F_1(x), \ldots, F_n(x)$,
 - there exists a 1-1 f-n f(x) for which
 - all n characteristics $F'_i(x) \stackrel{\text{def}}{=} f(F_i(x))$ are ε -maxitive.

Additive Measures: . . .

Outline

Fuzzy Measures: Brief...

Which Measures Are...

Which Measures Are...

Equivalence: Analysis...

Definitions and the . . .

First Auxiliary Result: . . .

Case of Generalized . .

Home Page

Title Page

Page 14 of 21

Go Back

Full Screen

Clos

Close

14. Conclusions

- The traditional probabilistic description of uncertainty uses additive probability measures.
- For describing non-probabilistic uncertainty, it is therefore reasonable to use non-additive measures.
- The most well-known example of such measures are possibility measures $\mu(A)$, for which:

$$\mu(A \cup B) = \max(\mu(A), \mu(B))$$
 for all A and B.

- In this talk, we show that the wide use of possibility measures may be explained by the fact that:
 - under some reasonable conditions,
 - these measures can approximate any non-additive measures.

15. Conclusions (cont-d)

• Namely, for every $\varepsilon > 0$, each non-additive measure is isomorphic to an ε -possibility measure, s.t.:

$$\max(\mu(A),\mu(B)) \leq \mu(A \cup B) \leq (1+\varepsilon) \cdot \max(\mu(A),\mu(B)).$$

- If we have several measures, then:
 - the tuple consisting of these measures
 - is isomorphic to a tuple of ε -possibility measures.
- Similar results are also proven for generalized metrics.

16. Acknowledgments

- This work was supported in part by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721.
- The authors are thankful:
 - to M. Amine Khamsi, Ilya Molchanov, and
 Hung T. Nguyen for valuable discussions, and
 - to the anonymous referees for valuable suggestions.

Additive Measures: . . . Fuzzy Measures: Brief... Which Measures Are Which Measures Are Equivalence: Analysis... Definitions and the . . . First Auxiliary Result: . . Case of Generalized . . Home Page Title Page **>>** Page 17 of 21 Go Back Full Screen Close Quit

17. Proof of the Main Result

- Let us first define a doubly infinite sequence $\ldots < c_{-1} < c_0 < c_1 < \ldots$ as follows.
- We take $c_0 = 1$; once we have defined c_k for some $k \ge 0$, we define c_{k+1} as follows.
- By def-n of an r-bounded measure, there exists $\Delta_k > 0$ s.t. if $\mu(A) \leq c_k$ and $\mu(B) \leq c_k$, then $\mu(A \cup B) \leq \Delta_k$.
- We then take $c_{k+1} \stackrel{\text{def}}{=} (1 + \varepsilon) \cdot \max(c_k, \Delta_k)$.
- Here, $c_0 = 1$ and $c_{k+1} \ge (1+\varepsilon) \cdot c_k$; thus, $c_k \ge (1+\varepsilon)^k$ and $c_k \to \infty$ when k increases.
- Similarly, once we have defined the value c_{-k} for some $k \geq 0$, we define $c_{-(k+1)}$ as follows.
- By def-n of an r-bounded measure, there exists $\nu_k > 0$ s.t. if $\mu(A) \leq \nu_k$ and $\mu(B) \leq \nu_k$, then $\mu(A \cup B) \leq c_{-k}$.
- We then take $c_{-(k+1)} \stackrel{\text{def}}{=} (1 \varepsilon) \cdot \min(c_{-k}, \nu_k)$.

Outline

Additive Measures: . . .

Fuzzy Measures: Brief...
Which Measures Are...

Which Measures Are...

Equivalence: Analysis.

Definitions and the . . .
First Auxiliary Result: . .

Case of Generalized . . .

Home Page

Title Page

←

Page 18 of 21

Go Back

Full Screen

Close

18. Proof (cont-d)

- Here, $c_0 = 1$ and $0 < c_{-(k+1)} \le (1 \varepsilon) \cdot c_{-k}$, hence $0 < c_{-k} \le (1 \varepsilon)^k$ and $c_{-k} \to 0$ when $k \to \infty$.
- Since $c_k \uparrow$, $c_k \to \infty$, and $c_{-k} \to 0$, for every x > 0, $\exists k$ s.t. $c_{k-1} < x \le c_k$; we define f(x) as follows:
 - for each integer k, we take $f(c_k) = (1 + \varepsilon)^{k/2}$ and
 - for each value x between c_{k-1} and c_k , we define f(x) by linear interpolation: if $c_{k-1} < x \le c_k$, then

$$f(x) = f(c_{k-1}) + \frac{x - c_{k-1}}{c_k - c_{k-1}} \cdot (f(c_k) - f(c_{k-1})).$$

- Since the sequence c_k is strictly increasing, the resulting function f(x) is also strictly increasing.
- W.l.o.g., we assume $\mu(A) \ge \mu(B)$.
- There exist integers k and ℓ for which $c_{k-1} < \mu(A) \le c_{k+1}$ and $c_{\ell-1} < \mu(B) \le c_{\ell}$; here, $k \ge \ell$ and $c_{\ell} \le c_k$.

Outline

Additive Measures: . . .

Fuzzy Measures: Brief...

Which Measures Are...
Which Measures Are...

Equivalence: Analysis...

Definitions and the...

First Auxiliary Result: . . Case of Generalized . . .

Home Page

Title Page

Page 19 of 21

Go Back

Full Screen

Close

• By definition of
$$\Delta_i$$

• By definition of Δ_k , we therefore have $\mu(A \cup B) \leq \Delta_k$.

 Δ_k , thence we have $\mu(A \cup B) \leq c_{k+1}$.

• Since the function f(x) is increasing, we get $\mu'(A \cup B) = f(\mu(A \cup B)) < f(c_{k+1}) = (1+\varepsilon)^{(k+1)/2}.$

• Here, $\max(\mu(A), \mu(B)) = \mu(A) > c_{k-1}$, so:

19.

 $\max(\mu'(A), \mu'(B)) = \mu'(A) = f(\mu(A)) > f(c_{k-1}) = (1+\varepsilon)^{(k-1)/2},$

• Multiplying both sides by $1 + \varepsilon$, we get

• We already know that $\mu'(A \cup B) < (1+\varepsilon)^{(k+1)/2}$.

• Thus, $\mu'(A \cup B) < (1 + \varepsilon) \cdot \max(\mu'(A), \mu'(B))$. Q.E.D.

• By definition of c_{k+1} , this value is always greater than

i.e., $(1+\varepsilon)^{(k-1)/2} < \max(\mu'(A), \mu'(B))$.

 $(1+\varepsilon)^{(k+1)/2} < (1+\varepsilon) \cdot \max(\mu'(A), \mu'(B)).$

Go Back

44

Outline

Additive Measures: . . .

Fuzzy Measures: Brief...

Which Measures Are . . . Which Measures Are...

Equivalence: Analysis.

Definitions and the . . .

First Auxiliary Result: . .

Case of Generalized . .

Home Page

Title Page

Page 20 of 21

>>

Full Screen Close

20. Proof of the Auxiliary Result

- This proof is similar to the main result, the only difference is how we define c_{k+1} and $c_{-(k+1)}$.
- By definition of an r-bounded measure, for each i, there exists a value $\Delta_{ki} > 0$ for which:

if
$$\mu_i(A) \leq c_k$$
 and $\mu_i(B) \leq c_k$, then $\mu_i(A \cup B) \leq \Delta_{ki}$.

- We take $c_{k+1} = (1 + \varepsilon) \cdot \max(c_k, \Delta_{k1}, \dots, \Delta_{kn})$.
- By definition of an r-bounded measure, for each i, there exists a value $\nu_{ki} > 0$ for which:

if
$$\mu_i(A) \leq \nu_{ki}$$
 and $\mu_i(B) \leq \nu_{ki}$, then $\mu_i(A \cup B) \leq c_{-k}$.

- We take $c_{-(k+1)} = (1 \varepsilon) \cdot \min(c_{-k}, \nu_{k1}, \dots, \nu_{kn})$.
- The rest of the proof is the same.

Outline
Additive Measures: ...
Fuzzy Measures: Brief.
Which Measures Are...
Which Measures Are...
Equivalence: Analysis...
Definitions and the...
First Auxiliary Result: ...
Case of Generalized...

Home Page

Title Page

Page 21 of 21

Go Back

Full Screen

Close