# Likert-Scale Fuzzy Uncertainty from a Traditional Decision Making Viewpoint: Incorporating both Subjective Probabilities and Utility Information

#### Joe Lorkowski and Vladik Kreinovich

Department of Computer Science University of Texas at El Paso 500 W. University El Paso, Texas 79968, USA lorkowski@computer.org, vladik@utep.edu

IFSA-NAFIPS'2013



### Fuzzy Uncertainty: A Usual Description

- ► Fuzzy logic formalizes imprecise properties *P* like "big" or "small" used in experts' statements.
- ▶ It uses the degree  $\mu_P(x)$  to which x satisfies P:
  - $\mu_P(x) = 1$  means that we are confident that x satisfies P;
  - $\mu_P(x) = 0$  means that we are confident that x does not satisfy P;
  - 0 < µ<sub>P</sub>(x) < 1 means that there is *some* confidence that x satisfies P, and some confidence that it doesn't.
- $\mu_P(x)$  is typically obtained by using a *Likert scale*:
  - ▶ the expert selects an integer *m* on a scale from 0 to *n*;
  - then we take  $\mu_P(x) := m/n$ ;
- ► This way, we get values  $\mu_P(x) = 0, 1/n, 2/n, \dots, n/n = 1$ .
- ▶ To get a more detailed description, we can use a larger *n*.



## Need to Combine Fuzzy and Traditional Techniques

- ► Fuzzy tools are effectively used to handle imprecise (fuzzy) expert knowledge in control and decision making.
- ► On the other hand, traditional utility-based techniques have been useful in crisp decision making (e.g., in economics).
- It is therefore reasonable to combine fuzzy and utility-based techniques.
- One way to combine these techniques is to translate fuzzy techniques into utility terms.
- For that, we need to describe Leikert scale selection in utility terms.
- To the best of our knowledge, this was never done before.
- This is what we do in this talk.





### Traditional Decision Theory: Reminder

- ► Main assumption for any two alternatives A and A':
  - either A is better (we will denote it A' < A),
  - or A' is better (we will denote it A < A'),
  - or A and A' are of equal value (denoted  $A \sim A'$ ).
- Resulting scale for describing the quality of different alternatives A:
  - ▶ to define a scale, we select a very bad alternative A<sub>0</sub> and a very good alternative A<sub>1</sub>;
  - ▶ for each  $p \in [0, 1]$ , we can form a lottery L(p) in which we get  $A_1$  with probability p and  $A_0$  with probability 1 p;
  - for each reasonable alternative A, we have  $A_0 = L(0) < A < L(1) = A_1$ ;
  - ▶ thus, for some p, we switch from L(p) < A to L(p) > A, i.e., there exists a "switch" value u(A) for which  $L(u(A)) \equiv A$ ;
  - ▶ this value u(A) is called the *utility* of the alternative A.





### **Utility Scale**

- ▶ We have a lottery L(p) for every probability  $p \in [0, 1]$ :
  - p = 0 corresponds to  $A_0$ , i.e.,  $L(0) = A_0$ ;
  - ▶ p = 1 corresponds to  $A_1$ , i.e.,  $L(1) = A_1$ ;
  - ▶  $0 corresponds to <math>A_0 < L(p) < A_1$ ;
  - ▶ p < p' implies L(p) < L(p').
- ► There is a continuous monotonic scale of alternatives:

$$L(0) = A_0 < \ldots < L(p) < \ldots < L(p') < \ldots < L(1) = A_1.$$

This utility scale is used to gauge the attractiveness of each alternative.





# How to Elicit the Utility Value: Bisection

- ▶ We know that  $A \equiv L(u(A))$  for some  $u(A) \in [0, 1]$ .
- ▶ Suppose that we want to find u(A) with accuracy  $2^{-k}$ .
- ▶ We start with  $[\underline{u}, \overline{u}] = [0, 1]$ . Then, For i = 1 to k, we:
  - compute the midpoint  $u_{\text{mid}}$  of  $[\underline{u}, \overline{u}]$
  - ask the expert to compare A with the lottery  $L(u_{mid})$
  - ▶ if  $A \le L(u_{\text{mid}})$ , then  $u(A) \le u_{\text{mid}}$ , so we can take

$$[\underline{u}, \overline{u}] = [\underline{u}, u_{\text{mid}}];$$

▶ if  $A \ge L(u_{\text{mid}})$ , then  $u(A) \ge u_{\text{mid}}$ , so we can take

$$[\underline{u}, \overline{u}] = [u_{\text{mid}}, \underline{u}].$$

- ▶ At each iteration, the width of  $[\underline{u}, \overline{u}]$  decreases by half.
- ▶ After k iterations, we get an interval  $[\underline{u}, \overline{u}]$  of width  $2^{-k}$  that contains u(A).
- ▶ So, we get u(A) with accuracy  $2^{-k}$ .



## Utility Theory and Human Decision Making

- Decision based on utility values
  - ▶ Which of the utilities u(A'), u(A''), ..., of the alternatives A', A'', ... should we choose?
  - ▶ By definition of utility, A' is preferable to A'' if and only if u(A') > u(A'').
  - We should always select an alternative with the largest possible value of utility.
  - So, to find the best solution, we must solve the corresponding optimization problem.
- Our claim is that when people make definite and consistent choices, these choices can be described by probabilities.
  - We are not claiming that people always make rational decisions.
  - ▶ We are *not* claiming that people estimate probabilities when they make rational decisions.



## Estimating the Utility of an Action a

- ▶ We know possible outcome situations  $S_1, ..., S_n$ .
- We often know the probabilities  $p_i = p(S_i)$ .
- ► Each situation  $S_i$  is equivalent to the lottery  $L(u(S_i))$  in which we get:
  - $A_1$  with probability  $u(S_i)$  and
  - $A_0$  with probability  $1 u(S_i)$ .
- ▶ So, *a* is equivalent to a complex lottery in which:
  - we select one of the situations  $S_i$  with prob.  $p_i = P(S_i)$ ;
  - ▶ depending on  $S_i$ , we get  $A_1$  with prob.  $P(A_1|S_i) = u(S_i)$ .
- ► The probability of getting A<sub>1</sub> is

$$P(A_1) = \sum_{i=1}^{n} P(A_1|S_i) \cdot P(S_i)$$
, i.e.,  $u(a) = \sum_{i=1}^{n} u(S_i) \cdot p_i$ .

- ► The sum defining u(a) is the expected value of the outcome's utility.
- So, we should select the action with the largest value of expected utility  $u(a) = \sum p_i \cdot u(S_i)$ .





#### Subjective Probabilities

- Sometimes, we do not know the probabilities p<sub>i</sub> of different outcomes.
- ► In this case, we can gauge the subjective impressions about the probabilities.
- ▶ Let's fix a prize (e.g., \$1). For each event *E*, we compare:
  - ▶ a lottery \(\ell\_E\) in which we get the fixed prize if the event \(E\) occurs and 0 is it does not occur, with
  - ▶ a lottery  $\ell(p)$  in which we get the same amount with probability p.
- ▶ Here,  $\ell(0) < \ell_E < \ell(1)$ ; so for some p, we switch from  $\ell(p) < \ell_E$  to  $\ell_E > \ell(p)$ .
- ▶ This threshold value ps(E) is called the *subjective* probability of the event E:  $\ell_E \equiv \ell(ps(E))$ .
- ► The utility of an action a with possible outcomes  $S_1, \ldots, S_n$  is thus equal to  $u(a) = \sum_{i=1}^n ps(E_i) \cdot u(S_i)$ .



#### Traditional Approach Summarized

- We assume that
  - we know possible actions, and
  - we know the exact consequences of each action.
- Then, we should select an action with the largest value of expected utility.





# Likert Scale in Terms of Traditional Decision Making

- Suppose that we have a Likert scale with n + 1 labels 0, 1, 2, ..., n, ranging from the smallest to the largest.
  - We mark the smallest end of the scale with x<sub>0</sub> and begin to traverse.
  - As x increases, we find a value belonging to label 1 and mark this threshold point by x<sub>1</sub>.
  - ► This continues to the largest end of the scale which is marked by  $x_{n+1}$
- As a result, we divide the range  $[\underline{X}, \overline{X}]$  of the original variable into n + 1 intervals  $[x_0, x_1], \dots, [x_n, x_{n+1}]$ :
  - ▶ values from the first interval  $[x_0, x_1]$  are marked with label 0;
  - **.**...
  - ▶ values from the (n + 1)-st interval  $[x_n, x_{n+1}]$  are marked with label n.
- ► Then, decisions are based only on the label, i.e., only on the interval to which *x* belongs:

$$[x_0, x_1]$$
 or  $[x_1, x_2]$  or ... or  $[x_n, x_{n+1}]$ 



#### Which Decision To Choose Within Each Label?

- ▶ Since we only know the label k to which x belongs, we select  $\widetilde{x}_k \in [x_k, x_{k+1}]$  and make a decision based on  $\widetilde{x}_k$ .
- ▶ Then, for all x from the interval  $[x_k, x_{k+1}]$ , we use the decision  $d(\tilde{x}_k)$  based on the value  $\tilde{x}_k$ .
- ▶ We should select intervals  $[x_k, x_{k+1}]$  and values  $\tilde{x}_k$  for which the expected utility is the largest.



#### Which Value $\tilde{x}_k$ Should We Choose

- To find this expected utility, we need to know two things:
  - the probability of different values of x; described by the probability density function  $\rho(x)$ ;
  - ▶ for each pair of values x' and x, the utility u(x', x) of using a decision d(x') when the actual value is x.
- In these terms, the expected utility of selecting a value  $\tilde{x}_k$  can be described as

$$\int_{x_k}^{x_{k+1}} \rho(x) \cdot u(\widetilde{x}_k, x) \, dx.$$

- ▶ Thus, for each interval  $[x_k, x_{k+1}]$ , we need to select a decision  $d(\widetilde{x}_k)$  such that the above expression is maximized.
- Since the actual value x can be in any of the n + 1 intervals, the overall expected utility is found by

$$\sum_{k=0}^{n} \max_{\widetilde{x}_k} \int_{x_k}^{x_{k+1}} \rho(x) \cdot u(\widetilde{x}_k, x) \, dx.$$





# Equivalent Reformulation In Terms of Disutility

- In the ideal case, for each value x, we should use a decision d(x), and gain utility u(x, x).
- ▶ In practice, we have to use decisions d(x'), and thus, get slightly worse utility values u(x', x).
- ► The corresponding decrease in utility  $U(x',x) \stackrel{\text{def}}{=} u(x,x) u(x',x)$  is usually called *disutility*.
- ▶ In terms of disutility, the function u(x', x) has the form

$$u(x',x)=u(x,x)-U(x',x),$$

So, to maximize utility, we select the values  $x_1, \ldots, x_n$  for which the disutility attains its smallest possible value:

$$\sum_{k=0}^{n} \min_{\widetilde{x}_k} \int_{x_k}^{x_{k+1}} \rho(x) \cdot U(\widetilde{x}_k, x) \, dx \to \min.$$





# Use of Likert Scales for the Membership Function $\mu(x)$

- ▶ We focus on the use of Likert scales to elicit the values of the membership function  $\mu(x)$ .
- In our n-valued Likert scale:
  - ▶ label  $0 = [x_0, x_1]$  corresponds to  $\mu(x) = 0/n$ ,
  - ▶ label 1 =  $[x_1, x_2]$  corresponds to  $\mu(x) = 1/n$ ,
  - **.** . . .
  - ▶ label  $n = [x_n, x_{n+1}]$  corresponds to  $\mu(x) = n/n = 1$ .
- ▶ When n is huge,  $\mu(x)$  corresponds to the limit  $n \to \infty$  so the width of each interval is very small.
- We can use the fact that each interval is narrow to simplify U(x', x) since x' and x belong to the same narrow interval.
- ▶ Thus, the difference  $\Delta x \stackrel{\text{def}}{=} x' x$  is small.



#### Using the Fact that Each Interval Is Narrow

▶ Thus, we can expand  $U(x + \Delta x, x)$  into Taylor series in  $\Delta x$ , and keep only the first non-zero term in this expansion.

$$U(x + \Delta x, x) = U_0(x) + U_1(x) \cdot \Delta x + U_2(x) \cdot \Delta x^2 + \dots,$$

- ▶ By definition of disutility,  $U_0(x) = U(x, x) = u(x, x) - u(x, x) = 0$
- ▶ Simularly, since disutility is smallest when  $x + \Delta x = x$ , the first derivative is also zero.
- So, the first nontrivial term is the second derivative  $U_2(x) \cdot \Delta x^2 \approx U_2(x) \cdot (\widetilde{x}_k x)^2$
- So, we need to minimize the integral

$$\int_{x_k}^{x_{k+1}} \rho(x) \cdot U_2(x) \cdot (\widetilde{x}_k - x)^2 \, dx.$$





#### Resulting Formula

 The membership function μ(x) obtained by using Likert-scale elicitation is equal to

$$\mu(x) = \frac{\int_{\underline{X}}^{x} (\rho(t) \cdot U_2(t))^{1/3} dt}{\int_{\underline{X}}^{\overline{X}} (\rho(t) \cdot U_2(t))^{1/3} dt},$$

where  $\rho(x)$  is the probability density describing the probabilities of different values of x,

$$U_2(x) \stackrel{\text{def}}{=} \frac{1}{2} \cdot \frac{\partial^2 U(x + \Delta x, x)}{\partial^2 (\Delta x)},$$

 $U(x',x) \stackrel{\text{def}}{=} u(x,x) - u(x',x)$ , and u(x',x) is the utility of using a decision d(x') corresponding to the value x' in the situation in which the actual value is x.



#### Resulting Formula

#### Comment:

- ► The resulting formula only applies to membership functions like "large" whose values monotonically increase with *x*.
- ► We can use a similar formula for membership functions like "small" which decrease with *x*.
- For "Approximately 0," we separately apply these formulas to both increasing and decreasing parts.
- The resulting membership degrees incorporate both probability and utility information.
- This explains why fuzzy techniques often work better than probabilistic techniques without utility information.





#### Conclusion

- We have considered an ideal situation in which
  - we have full information about the probabilities  $\rho(x)$ , and
  - the user can always definitely decide between every two alternatives.
- In practice, we often only have intervals of possible values of  $\rho(x)$ .
- It is natural to assume that
  - $\rho(x) = \text{const and } U_2(x) = \text{const and}$
  - the resulting formula leads to a linear membership function (0 to 1 or 1 to 0) on the corresponding interval.
- This may explain why triangular membership functions (two such linear segments) are used in many fuzzy techniques.
- ▶ In the future, it is desirable to extend our formulas to the general interval-valued case.



#### Questions

Questions?



### Appendix 1: Utility Value

- Let A be any alternative such that  $A_0 < A < A_1$ ; then:
  - as p increases from 0, L(p) < A;
  - then, at some point, L(p) > A;
  - so, there is a threshold separating values for which L(p) < A from the values for which L(p) > A;
  - this threshold is called the utility of alternative A:

$$u(A) \stackrel{def}{=} \sup\{p : L(p) < A\} = \inf\{p : L(p) > A\}$$

▶ Here, for every  $\varepsilon$  > 0, we have

$$L(u(A) - \varepsilon) < A < L(u(A) - \varepsilon).$$

▶ In this sense, the alternative A is (almost) equivalent to L(u(A)); we will denote this almost equivalence by

$$A \equiv L(u(A)).$$





#### Appendix 2: Almost Uniqueness of Utility

- ► The definition of utility u depends on the selection of two fixed alternatives A<sub>0</sub> and A<sub>1</sub>.
- ▶ What if we use different alternatives  $A'_0$  and  $A'_1$ ?
- ▶ By definition of utility, every alternative A is equivalent to a lottery L(u(A)) in which we get  $A_1$  with probability u(A) and  $A_0$  with probability 1 u(A).
- For simplicity, let us assume that  $A'_0 < A_0 < A_1 < A'_1$ . Then, for the utility u', we get  $A_0 \equiv L'(u'(A_0))$  and  $A_1 \equiv L'(u'(A_1))$ .



#### Appendix 2: Almost Uniqueness of Utility

- So, the alternative A is equivalent to a complex lottery in which:
  - we select  $A_1$  with probability u(A) and  $A_0$  with probability 1 u(A);
  - depending on which of the two alternatives  $A_i$  we get, we get  $A'_1$  with probability  $u'(A_i)$  and  $A'_0$  with probability  $1 u'(A_i)$ .
- In this complex lottery, we get  $A'_1$  with probability  $u'(A) = u(A) \cdot (u'(A_1) u'(A_0)) + u'(A_0)$ .
- ► Thus, the utility u'(A) is related with the utility u(A) by a linear transformation  $u' = a \cdot u + b$ , with a > 0.



# Appendix 3: Reformulation In Terms of Disutility

- In the ideal case, for each value x, we should use a decision d(x), and gain utility u(x, x).
- ▶ In practice, we have to use decisions d(x'), and get slightly worse utility values u(x', x).
- ► The corresponding decrease in utility  $U(x',x) \stackrel{\text{def}}{=} u(x,x) u(x',x)$  is usually called *disutility*.
- ▶ In terms of disutility, the function u(x', x) has the form

$$u(x',x)=u(x,x)-U(x',x),$$





# Appendix 3: Reformulation In Terms of Disutility

Thus, the optimized expression takes the form

$$\int_{x_k}^{x_{k+1}} \rho(x) \cdot u(x,x) \, dx - \int_{x_k}^{x_{k+1}} \rho(x) \cdot U(\widetilde{x}_k,x) \, dx.$$

- ▶ The first integral does not depend on  $\widetilde{x}_k$ ; thus, the expression attains its maximum if and only if the second integral attains its minimum.
- The resulting maximum thus takes the form

$$\int_{x_k}^{x_{k+1}} \rho(x) \cdot u(x,x) \, dx - \min_{\widetilde{x}_k} \int_{x_k}^{x_{k+1}} \rho(x) \cdot U(\widetilde{x}_k,x) \, dx.$$





# Appendix 3: Reformulation In Terms of Disutility

Thus, we get the form

$$\sum_{k=0}^n \int_{x_k}^{x_{k+1}} \rho(x) \cdot u(x,x) \, dx - \sum_{k=0}^n \min_{\widetilde{x}_k} \int_{x_k}^{x_{k+1}} \rho(x) \cdot U(\widetilde{x}_k,x) \, dx.$$

- ► The first sum does not depend on selecting the thresholds.
- ► Thus, to maximize utility, we should select the values  $x_1, \ldots, x_n$  for which the second sum attains its smallest possible value:

$$\sum_{k=0}^n \min_{\widetilde{x}_k} \int_{x_k}^{x_{k+1}} 
ho(x) \cdot U(\widetilde{x}_k, x) dx o \min.$$





- ▶ In an *n*-valued scale:
  - the smallest label 0 corresponds to the value  $\mu(x) = 0/n$ ,
  - the next label 1 corresponds to the value  $\mu(x) = 1/n$ ,
  - **>** . . .
- the last label *n* corresponds to the value  $\mu(x) = n/n = 1$ .
- ► Thus, for each *n*:
  - values from the interval  $[x_0, x_1]$  correspond to the value  $\mu(x) = 0/n$ ;
  - values from the interval  $[x_1, x_2]$  correspond to the value  $\mu(x) = 1/n$ ;

  - ▶ values from the interval  $[x_n, x_{n+1}]$  correspond to the value  $\mu(x) = n/n = 1$ .
- ▶ The actual value of the membership function  $\mu(x)$  corresponds to the limit  $n \to \infty$ , i.e., in effect, to very large values of n.
- ► Thus, in our analysis, we will assume that the number n of labels is huge and thus, that the width of each of n+1 intervals  $[x_k, x_{k+1}]$  is very small.

- ▶ The fact that each interval is narrow allows simplification of the expression U(x', x).
- ▶ In the expression U(x', x), both values x' and x belong to the same narrow interval
- ▶ Thus, the difference  $\Delta x \stackrel{\text{def}}{=} x' x$  is small.
- So, we can expand  $U(x',x) = U(x + \Delta x, x)$  into Taylor series in  $\Delta x$ , and keep only the first non-zero term.
- In general, we have

$$U(x + \Delta, x) = U_0(x) + U_1 \cdot \Delta x + U_2(x) \cdot \Delta x^2 + \dots,$$

where

$$U_0(x) = U(x, x), \quad U_1(x) = \frac{\partial U(x + \Delta x, x)}{\partial (\Delta x)},$$

$$U_2(x) = \frac{1}{2} \cdot \frac{\partial^2 U(x + \Delta x, x)}{\partial^2 (\Delta x)}.$$

- ► Here, by definition of disutility, we get  $U_0(x) = U(x,x) = u(x,x) u(x,x) = 0$ .
- Since the utility is the largest (and thus, disutility is the smallest) when x' = x, i.e., when  $\Delta x = 0$ , the derivative  $U_1(x)$  is also equal to 0
- Thus, the first non-trivial term corresponds to the second derivative:

$$U(x + \Delta x, x) \approx U_2(x) \cdot \Delta x^2$$

reformulated in terms of  $\widetilde{x}_k$  (that needs to be minimized)

$$U(\widetilde{x}_k,x)\approx U_2(x)\cdot(\widetilde{x}_k-x)^2,$$

is substituted into the expression

$$\int_{x_k}^{x_{k+1}} \rho(x) \cdot U(\widetilde{x}_k, x) \, dx$$





We need to minimize the integral

$$\int_{x_k}^{x_{k+1}} \rho(x) \cdot U_2(x) \cdot (\widetilde{x}_k - x)^2 \, dx$$

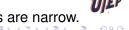
- by differentiating with respect to the unknown  $\tilde{x}_k$  and equating the derivative to 0.
- ▶ Thus, we conclude that  $\int_{x_k}^{x_{k+1}} \rho(x) \cdot U_2(x) \cdot (\widetilde{x}_k x) dx = 0$ ,
- ▶ i.e., that

$$\widetilde{x}_k \cdot \int_{x_k}^{x_{k+1}} \rho(x) \cdot U_2(x) dx = \int_{x_k}^{x_{k+1}} x \cdot \rho(x) \cdot U_2(x) dx,$$

and thus, that

$$\widetilde{x}_k = \frac{\int_{x_k}^{x_{k+1}} x \cdot \rho(x) \cdot U_2(x) \, dx}{\int_{x_k}^{x_{k+1}} \rho(x) \cdot U_2(x) \, dx}$$

which can be simplified because the intervals are narrow.



30/38

- We denote the midpoint of the interval  $[x_k, x_{k+1}]$  by  $\overline{x}_k \stackrel{\text{def}}{=} \frac{x_k + x_{k+1}}{2}$ , and denote  $\Delta x \stackrel{\text{def}}{=} x \overline{x}_k$ ,
- then we have  $x = \overline{x}_k + \Delta x$ .
- Expanding into Taylor series in terms of a small value Δx and keeping only main terms, we get

$$\rho(\mathbf{X}) = \rho(\overline{\mathbf{X}}_k + \Delta \mathbf{X}) = \rho(\overline{\mathbf{X}}_k) + \rho'(\overline{\mathbf{X}}_k) \cdot \Delta \mathbf{X} \approx \rho(\overline{\mathbf{X}}_k),$$

where f'(x) denoted the derivative of a function f(x), and

$$U_2(x) = U_2(\overline{x}_k + \Delta x) = U_2(\overline{x}_k) + U_2'(\overline{x}_k) \cdot \Delta x \approx U_2(\overline{x}_k).$$



▶ Using these new  $\rho(\overline{x}_k)$  and  $U_2(\overline{x}_k)$ , we get

$$\widetilde{X}_{k} = \frac{\rho(\overline{X}_{k}) \cdot U_{2}(\overline{X}_{k}) \cdot \int_{X_{k}}^{X_{k+1}} x \, dx}{\rho(\overline{X}_{k}) \cdot U_{2}(\overline{X}_{k}) \cdot \int_{X_{k}}^{X_{k+1}} dx} = \frac{\int_{X_{k}}^{X_{k+1}} x \, dx}{\int_{X_{k}}^{X_{k+1}} dx} = \frac{\frac{1}{2} \cdot (X_{k+1}^{2} - X_{k}^{2})}{X_{k+1} - X_{k}} = \frac{X_{k+1} + X_{k}}{2} = \overline{X}_{k}.$$

- Substituting  $\tilde{x}_k = \overline{x}_k$  into the integral and understanding that, on the k-th interval, we have  $\rho(x) \approx \rho(\overline{x}_k)$  and  $U_2(x) \approx U_2(\overline{x}_k)$
- we conclude that the integral takes the form

$$\int_{x_k}^{x_{k+1}} \rho(\overline{x}_k) \cdot U_2(\overline{x}_k) \cdot (\overline{x}_k - x)^2 \, dx =$$

$$\rho(\overline{x}_k) \cdot U_2(\overline{x}_k) \cdot \int_{x_k}^{x_{k+1}} (\overline{x}_k - x)^2 \, dx. \tag{8a}$$

▶ When x goes from  $x_k$  to  $x_{k+1}$ , the difference  $\Delta x$  between x and the interval's midpoint  $\overline{x}_k$  ranges from  $-\Delta_k$  to  $\Delta_k$ , where  $\Delta_k$  is the interval's half-width:

$$\Delta_k \stackrel{\mathrm{def}}{=} \frac{x_{k+1} - x_k}{2}.$$

▶ In terms of the new variable  $\Delta x$ , the right-hand side of the integral has the form

$$\int_{x_k}^{x_{k+1}} (\overline{x}_k - x)^2 dx = \int_{-\Delta_k}^{\Delta_k} (\Delta x)^2 d(\Delta x) = \frac{2}{3} \cdot \Delta_k^3.$$

▶ Thus, the integral takes the form

$$\frac{2}{3} \cdot \rho(\overline{x}_k) \cdot U_2(\overline{x}_k) \cdot \Delta_k^3.$$





► The problem of selecting the Likert scale thus becomes the problem of minimizing the sum

$$\frac{2}{3} \cdot \sum_{k=0}^{n} \rho(\overline{x}_k) \cdot U_2(\overline{x}_k) \cdot \Delta_k^3.$$

- ► Here,  $\overline{x}_{k+1} = x_{k+1} + \Delta_{k+1} = (\overline{x}_k + \Delta_k) + \Delta_{k+1} \approx \overline{x}_k + 2\Delta_k$ , so  $\Delta_k = (1/2) \cdot \Delta \overline{x}_k$ , where  $\Delta \overline{x}_k \stackrel{\text{def}}{=} \overline{x}_{k+1} \overline{x}_k$ .
- Thus, we get the form

$$\frac{1}{3} \cdot \sum_{k=0}^{n} \rho(\overline{x}_k) \cdot U_2(\overline{x}_k) \cdot \Delta_k^2 \cdot \Delta \overline{x}_k. \tag{11}$$





- In terms of the membership function, we have  $\mu(\overline{x}_k) = k/n$  and  $\mu(\overline{x}_{k+1}) = (k+1)/n$ .
- ▶ Since the half-width  $\Delta_k$  is small, we have

$$\frac{1}{n} = \mu(\overline{x}_{k+1}) - \mu(\overline{x}_k) = \mu(\overline{x}_k + 2\Delta_k) - \mu(\overline{x}_k) \approx \mu'(\overline{x}_k) \cdot 2\Delta_k,$$

- thus,  $\Delta_k \approx \frac{1}{2n} \cdot \frac{1}{\mu'(\overline{x}_k)}$ .
- Substituting this expression into the sum, we get  $\frac{1}{3 \cdot (2n)^2} \cdot I$ , where

$$I = \sum_{k=0}^{n} \frac{\rho(\overline{x}_k) \cdot U_2(\overline{x}_k)}{(\mu'(\overline{x}_k))^2} \cdot \Delta \overline{x}_k. \tag{12}$$





▶ The expression I is an integral sum, so when  $n \to \infty$ , this expression tends to the corresponding integral

$$I = \int \frac{\rho(x) \cdot U_2(x)}{(\mu'(x))^2} \, dx.$$

▶ With respect to the derivative  $d(x) \stackrel{\text{def}}{=} \mu'(x)$ , we need to minimize the objective function

$$I = \int \frac{\rho(x) \cdot U_2(x)}{d^2(x)} dx \tag{12}$$

under the constraint that

$$\int_{\underline{X}}^{X} d(x) dx = \mu(\overline{X}) - \mu(\underline{X}) = 1 - 0 = 1.$$
 (13)

By using the Lagrange multiplier method, we can reduce to the unconstrained problem of minimizing the functional

$$I = \int \frac{\rho(x) \cdot U_2(x)}{d^2(x)} \, dx + \lambda \cdot \int d(x) \, dx.$$

- ▶ Differentiating with respect to d(x) and equating the derivative to 0, we conclude that  $-2 \cdot \frac{\rho(x) \cdot U_2(x)}{d^3(x)} + \lambda = 0$ ,
- ▶ i.e., that  $d(x) = c \cdot (\rho(x) \cdot U_2(x))^{1/3}$  for some constant c.
- ► Thus,  $\mu(x) = \int_X^x d(t) dt = c \cdot \int_X^x (\rho(t) \cdot U_2(t))^{1/3} dt$ .
- ▶ The constant c must be determined by the condition that  $\mu(\overline{X}) = 1$ .
- ► Thus, we arrive at the resulting formula.



## Appendix 4: Resulting Formula

▶ The membership function  $\mu(x)$  obtained by using Likert-scale elicitation is equal to

$$\mu(x) = \frac{\int_{\underline{X}}^{x} (\rho(t) \cdot U_2(t))^{1/3} dt}{\int_{\underline{X}}^{\overline{X}} (\rho(t) \cdot U_2(t))^{1/3} dt},$$

where  $\rho(x)$  is the probability density describing the probabilities of different values of x,

$$U_2(x) \stackrel{\text{def}}{=} \frac{1}{2} \cdot \frac{\partial^2 U(x + \Delta x, x)}{\partial^2 (\Delta x)},$$

 $U(x',x) \stackrel{\text{def}}{=} u(x,x) - u(x',x)$ , and u(x',x) is the utility of using a decision d(x') corresponding to the value x' in the situation in which the actual value is x.

