How to Generate Worst-Case Scenarios When Testing Already Deployed Systems Against New Situations

Francisco Zapata¹, Ricardo Pineda¹, and Martine Ceberio²

¹Research Institute for Manufacturing & Engineering Systems (RIMES)

²Department of Computer Science
University of Texas at El Paso
500 W. University, El Paso, TX 79968, USA

¹fazapatagonzalez@utep.edu, rlpineda@utep.edu,

²mceberio@utep.edu

1. Traditional Systems Engineering Approach

- Traditionally, a system of interest (SOI) is developed by eliciting requirements from the stakeholders.
- These requirements are analyzed to build an architectural design that will drive the system development.
- Through an iterative process the system is constantly refined via:
 - elicitation and update of requirements,
 - design,
 - development, and
 - testing.
- Eventually, a final product is obtained.
- In this approach, the development of the SOI is limited to the requirements specified by the stakeholders.
- Here, emergent behavior is not welcomed.

Systems of Systems Specific Example Need for Generating . . . Crisp Case Component-Wise . . . Applying the . . . Algorithm: Next... From Crisp Case to a . . . Home Page Title Page **>>** Page 2 of 21 Go Back Full Screen Close Quit

2. Systems of Systems

- Since the 1990s:
 - advances in Information and Communication Technologies (ICT)
 - have enabled greater capabilities to exchange information between systems in near real-time.
- The integration of these independently developed systems required:
 - communication interface standards,
 - information models, and
 - inter-operatibility standards.
- This integration need has given birth to a new kind of meta-systems called *Systems of Systems* (SoS).
- Example: an airplane contains navigation, propulsion, GPS, communication, and other systems.

3. Systems of Systems (cont-d)

- A SoS is a system of interest which is:
 - a collection of large-scale, heterogenous systems,
 - that inter-operate to achieve a greater common objective.
- A SoS is characterized by the following attributes:
 - operational independence,
 - managerial independence,
 - SoS evolutionary development,
 - SoS incremental functionality (knowledge domains),
 - geographical distribution.
- For constituent systems, new behavior is not welcomed.
- But for the meta-system, some new emerging behavior may be welcomed.

Traditional Systems . . . Systems of Systems Specific Example Need for Generating . . . Crisp Case Component-Wise . . . Applying the . . . Algorithm: Next... From Crisp Case to a . . Home Page Title Page **>>** Page 4 of 21 Go Back Full Screen Close Quit

4. Formulation of the Problem

- Before a complex system is deployed:
 - Integration, Verification, Validation, Test and Evaluation (IVVT&E) methodologies
 - are applied to known well-defined operational scenarios.
- Once the system is deployed, new possible scenarios may emerge.
- It is desirable to develop methodologies to test a system against such emergent scenarios:
 - an unmanned Aircraft System (UAS) encounters new scenarios that were not predicted;
 - a health care monitoring system may encounter a new illness that was not known before.

5. Specific Example

- In this paper, we start the analysis by considering the simplest example.
- As such an example, we take an automatic system that helps prevent a car from getting too close to the walls of a freeway.
- At first glance, all we need for this is a sensoring system that measures a distance x from a car to an obstacle.
- There are usually several distance sensors, and the system is set up to work well in the expected situations.
- The problem starts when we encounter a new unexpected situation, e.g., a hole in the nearby wall.

6. Specific Example (cont-d)

- In the case of a hole in the wall:
 - some sensors measure the distance to a wall, while
 - other sensors measure the distance to a next faraway wall (located very far from the road).
- As a result, the existing algorithms may under-estimate the distance to the obstacle.
- So, even when the car is very close to the wall, the system may operate under the false impression of safety.

7. Need for Generating Worst-Case Scenarios

- Once the system designers realize that novel situations are possible:
 - they can come up with methods to improve the system's performance on non-standard situations;
 - then, they need to test these methods.
- A usual way of testing a system is to test it on worstcase scenarios.
- So, we face a question of generating such worst-case scenarios.
- In this talk, we explore:
 - the ways of generating worst-case scenarios to validate system behavior under unexpected scenarios
 - on the example of the above car problem.

8. How the Distance-Measuring System Is Set Up Now: A Simplified Description

- The distance-measuring system usually involve several sensors to account for robustness (redundancy).
- Each of the sensors produces a measurement result x_i .
- So, we need to estimate the actual distance d based on these measurement results x_1, \ldots, x_n .
- Because of the measurement noise, for each distance d, we get slightly different values $x_i \approx d$
- In many cases, the measurement error is normally distributed, with a standard deviation σ .
- In other words, for each result x_i , we have a probability distribution with the probability density

$$\rho_{d,i}(x_i) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \exp\left(-\frac{(x_i - d)^2}{2\sigma^2}\right).$$

9. How the Distance-Measuring System Is Set Up Now (cont-d)

- Measurement errors corresponding to different measurements are usually independent.
- So, the probability density $\rho_d(x)$ for the vector $x = (x_1, \ldots, x_n)$ of measurement results is a product:

$$\rho_d(x_1, \dots, x_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \exp\left(-\frac{(x_i - d)^2}{2\sigma^2}\right).$$

- As a desired estimate d for the distance, it is reasonable to select the most probable value d,
- In other words, we select the value d for which the probability $\rho_d(x_1, \ldots, x_n)$ is the largest possible.
- Equating the derivative to 0, we get an estimate

$$\overline{x} = \frac{x_1 + \ldots + x_n}{n}.$$

Systems of Systems Specific Example Need for Generating . . . Crisp Case Component-Wise . . . Applying the . . . Algorithm: Next... From Crisp Case to a . . . Home Page Title Page **>>** Page 10 of 21 Go Back Full Screen Close Quit

10. Criterion for Selecting a Worst-Case Scenario

- Reminder: a reasonable way to estimate the distance d is to take the average \overline{x} of measured values x_1, \ldots, x_n .
- This average works well in standard situations.
- In non-standard situations, an alert is needed when the smallest m of the distances is dangerously small:

$$m \stackrel{\text{def}}{=} \min(x_1, \dots, x_n) \ll d_{\min}.$$

- When the minimum m is close to the average \overline{x} , the situation is not so bad.
- Situation is bad when there is a drastic difference between \overline{x} and m
- The worst-case scenario is when the difference $\overline{x} m$ is the largest:

$$\overline{x} - m = \frac{x_1 + \ldots + x_n}{n} - \min(x_1, \ldots, x_n) \to \max.$$

Systems of Systems Specific Example Need for Generating . . . Crisp Case Component-Wise . . . Applying the . . . Algorithm: Next... From Crisp Case to a . . . Home Page Title Page **>>** Page 11 of 21 Go Back Full Screen Close Quit

11. Crisp Case

- First, we consider the crisp case.
- In this case, each distance x_i can take arbitrary value from the interval [0, D], for some constant D.
- In this case, we need to maximize the difference $\overline{x} m$ under the constraints that $0 \le x_i \le D$.
- In this case, we assume:
 - that we know the exact bound D on the possible distances x_i , and
 - that we have no information about which combinations $x = (x_1, \dots, x_n)$ are more probable.

12. Case Study: Algorithmic Analysis

- The problem of exactly maximizing a given f-n is computationally difficult (NP-hard), i.e., we cannot have:
 - an efficient (feasible) algorithm
 - that always provides an exact solution to the optimization problem.
- Since exact optimization is difficult, we need to use approximate optimization algorithms A.
- Most known optimization algorithms A (e.g., gradient descent) use derivatives of the objective function.
- In our case, the objective function is not differentiable, since $\min(x_1, x_2)$ is not differentiable when $x_1 = x_2$.
- We thus need A which do not require derivatives; the simplest such algor. A is component-wise optimization.

13. Component-Wise Optimization: Idea

- We start with some initial values $x_1^{(0)}, \ldots, x_n^{(0)}$.
- Then, we fix all the values but x_1 , i.e., we take

$$x_2 = x_2^{(0)}, \dots, x_n = x_n^{(0)}.$$

• We find the value $x_1^{(1)}$ for which the following expression is the largest possible:

$$f\left(x_1, x_2^{(0)}, \dots, x_n^{(0)}\right).$$

• Then, we fix all the values but x_2 , i.e., we take

$$x_1 = x_1^{(1)}, x_3 = x_3^{(0)}, \dots, x_n = x_n^{(0)}.$$

• We find the value $x_2^{(1)}$ for which the following expression is the largest possible:

$$f\left(x_1^{(1)}, x_2, x_3^{(0)}, \dots, x_n^{(0)}\right).$$

14. Component-Wise Optimization: Idea (cont-d)

• Once $x_1^{(1)}$ and $x_2^{(1)}$ are found, we perform similar computations to find new values

$$x_3^{(1)}, x_4^{(1)}, \dots, x_n^{(1)}.$$

- Once the new values $x_1^{(1)}, \ldots, x_n^{(1)}$ of all the variables x_1, \ldots, x_n are found, we repeat the whole cycle.
- Thus, we find the new value

$$x_1^{(2)}, \dots, x_n^{(2)}.$$

• If needed, we repeat the whole cycle again, getting the values

$$x_1^{(3)}, \ldots, x_n^{(3)}.$$

- If necessary, we repeat this cycle several times.
- We stop when we do not get any improvement.

Systems of Systems

Traditional Systems . . .

Specific Example

Need for Generating...

Crisp Case

Component-Wise...

Algorithm: Next...

From Crisp Case to a . .

Home Page

Title Page

Page 15 of 21

Go Back

Full Screen

Close

Quit

15. Component-Wise Optimization: A Formal Description

- We start with some initial values $x_1^{(0)}, \ldots, x_n^{(0)}$.
- Each iteration consists of n stages i = 1, ..., n.
- On each stage i:
 - we fix the previously obtained values of all the variables except for x_i ;
 - as $x_i^{(k+1)}$, we take a value x_i for which the following expression is the largest:

$$f\left(x_1^{(k+1)},\ldots,x_{i-1}^{(k+1)},x_i,x_{i+1}^{(k)},\ldots,x_n^{(k)}\right).$$

• We stop when for some appropriate $\varepsilon > 0$, for all i, we have:

$$\left| x_i^{(k+1)} - x_i^{(k)} \right| \le \varepsilon.$$

Systems of Systems Specific Example Need for Generating . . . Crisp Case Component-Wise . . . Applying the . . . Algorithm: Next... From Crisp Case to a . . Home Page Title Page **>>** Page 16 of 21 Go Back Full Screen Close Quit

16. Applying the Algorithm to Our Problem

• Let us start with equal values:

$$x_1^{(0)} = \dots = x_n^{(0)} = d_0$$
 for some appropriate d_0 .

• 1st stage: select x_1 that maximizes the difference:

$$\mathcal{D}(x_1) = \frac{x_1 + d_0 + \dots + d_0}{n} - \min(x_1, d_0, \dots, d_0) = \frac{x_1 + (n-1) \cdot d_0}{n} - \min(x_1, d_0).$$

• When $x_1 \in [0, d_0]$, we have $\min(x_1, d_0) = x_1$ and thus,

$$\mathcal{D}(x_1) = \frac{x_1 + (n-1) \cdot d_0}{n} - x_1 = \frac{n-1}{n} \cdot d_0 - \frac{n-1}{n} \cdot x_1.$$

• This function decreases with x_1 , so the difference is the largest when $x_1 = 0$, and is equal to $\mathcal{D}(0) = \frac{n-1}{n} \cdot d_0$.

Traditional Systems . . .

Systems of Systems

Specific Example

Need for Generating . . .

Crisp Case

risp Case

Applying the...

Component-Wise . . .

Algorithm: Next...

From Crisp Case to a . . .

Home Page

Title Page

44 **>>**

←

Page 17 of 21

Go Back

Full Screen

Close

Quit

Algorithm: 1st Stage (cont-d)

- Reminder:
 - $\mathcal{D}(x_1) = \frac{x_1 + (n-1) \cdot d_0}{n} \min(x_1, d_0);$
 - when $x_1 \in [0, d_0]$, the max is $\mathcal{D}(0) = \frac{n-1}{n} \cdot d_0$.
- When $x_1 \in [d_0, D]$, we have $\min(x_1, d_0) = d_0$, so the difference equals $\mathcal{D}(x_1) = \frac{x_1 + (n-1) \cdot d_0}{n} d_0$.
- This function increases with x_1 , so its largest value is when $x_1 = D$, and equals to

$$\mathcal{D}(D) = \frac{n-1}{n} \cdot d_0 + \frac{1}{n} \cdot D - d_0 = \frac{1}{n} \cdot (D - d_0).$$

- $x_1 = 0$ leads to the larger difference if $D \leq d_0 \cdot n$; so:
 - if $D \leq d_0 \cdot n$, then we take $x_1^{(1)} = 0$;
 - if $D \ge d_0 \cdot n$, then we take $x_1^{(1)} = D$.

Systems of Systems

Traditional Systems . . .

Specific Example

Need for Generating . . .

Crisp Case

Component-Wise . . .

Applying the...

Algorithm: Next...

From Crisp Case to a...

Home Page
Title Page

44 >>>

→

Page 18 of 21

Go Back

Full Screen

Close

Quit

18. Algorithm: Next Stages and Conclusion

- On the 2nd stage, we fix $x_1 = x_1^{(1)}$ and find x_2 that maximizes the difference.
- On the 3rd stage, we fix $x_2 = x_2^{(1)}$ and find x_3 , etc.
- When $x_1^{(1)} = 0$, we get $x_2^{(1)} = \dots = x_n^{(1)} = D$; the corresponding difference is equal to $\frac{(n-1) \cdot D}{n}$.
- When $x_1^{(1)} = D$ we get $x_2^{(1)} = \dots = x_{n-1}^{(1)} = D$ and $x_n^{(1)} = 0$, with the same difference $\frac{(n-1) \cdot D}{n}$.
- One can prove that this is actually the global maximum of the difference.
- Conclusion: we recommend to use component-wise optimization to find the worst-case scenario.

Systems of Systems Specific Example Need for Generating . . . Crisp Case Component-Wise . . . Applying the . . . Algorithm: Next... From Crisp Case to a . . Home Page Title Page **>>** Page 19 of 21 Go Back Full Screen Close

Quit

19. From Crisp Case to a More Realistic Case of Soft Constraints

- In practice, we only know such bounds D with uncertainty.
- We also have some information about which combinations are more probable and which are less probable.
- This information is usually described in imprecise terms, by using words from a natural language.
- It is therefore reasonable to use fuzzy techniques to describe this information.
- In the fuzzy approach, we assign, to every combination x, a degree $\mu(x)$ to which x is probable.
- Then, to find the worst-case scenario, we optimize the objective function under such *soft* constraints.

How to Optimize Under Soft Constraints

- For this optimization, we can use known techniques of optimizing a (crisp) function f(x) over fuzzy sets.
- For example, we can use Bellman-Zadeh techniques in which we maximize the expression

$$g(x) \stackrel{\text{def}}{=} \min \left(\frac{f(x) - \underline{y}}{\overline{y} - \underline{y}}, \mu(x) \right)$$
, where:

- y and \overline{y} are the minimum and maximum of the function f(x) over the entire domain,
- the ratio $\frac{f(x)-y}{\overline{y}-y}$ describes to what extent the vector x is optimal, and
- q(x) means that x is optimal and satisfies the constraints – with min corresponding to "and".

Traditional Systems . . . Systems of Systems Specific Example Need for Generating . . . Crisp Case Component-Wise . . . Applying the . . . Algorithm: Next... From Crisp Case to a . . Home Page Title Page 44

Page 21 of 21

Go Back

Full Screen

Close

Quit