How to Fuse Expert Knowledge: Not Always "And" but a Fuzzy Combination of "And" and "Or"

Christian Servin¹, Olga Kosheleva², and Vladik Kreinovich³
¹Computer Science and Information Technology Systems Department
El Paso Community College, 919 Hunter
El Paso, TX 79915, USA, cservin@gmail.com

^{2,3}Departments of ²Teacher Education and ³Computer Science
University of Texas at El Paso, El Paso, Texas 79968, USA
olgak@utep.edu, vladik@utep.edu

Need to Fuse . . . Examples Fusing Expert . . . Example Need to Consider the . . . In General, How ... How to Define Degree . . Resulting Definition of . . . Discussion Home Page **>>** Page 1 of 28 Go Back Full Screen Close Quit

1. Need to Fuse Knowledge of Different Experts

- Expert estimates of different quantities are usually not very accurate.
- In situations when measurements are possible, they are more accurate than expert estimates.
- When we can perform measurements:
 - we can further increase the measurement accuracy
 - if we use several different measuring instruments and then combine ("fuse") their results.
- It is known that such combinations are usually more accurate than all original measurement results.

2. Need to Fuse Knowledge (cont-d)

- In many situations, measurements are not realistically possible, so we have to rely on expert estimates only.
- In such situations:
 - we can increase the accuracy of the resulting estimates the same way:
 - by combining (fusing) estimates of several experts.

3. Examples

- To estimate the temperature, we can ask two experts.
- Suppose that:
 - one expert states that the temperature is between 22 and 25 degree C, and
 - another expert states the temperature is in the low seventies, i.e., between 70 and 75 F;
 - this corresponds to between 21 and 24 C.
- Then we can conclude that the actual temperature is larger than 22 C and smaller than 24 C i.e., the actual temperature is between 22 and 24 C.
- If we only ask one expert, we get an interval of width 3 that contains the actual temperature.
- But by fusing the opinions of the two experts, we get a narrower interval [22, 24] of width 2.

- So, we have indeed increased the accuracy.
- Fusion is also possible on a non-quantitative level.
- For example, we can ask experts whether the wind is weak, moderate, or strong.
- Suppose that:
 - one expert says that the wind is not weak, while
 - another expert says that the wind is not strong.
- By combining the opinions of both experts, we can conclude that the wind is moderate.
- On the other hand, if we only to one of the experts, we would not be able to come to this conclusion.

5. Fusing Expert Knowledge: Non-Fuzzy Case

- Let us start with the case when expert estimates are crisp (non-fuzzy).
- So, for each possible value of the estimated quantity, the expert is:
 - either absolutely sure that this value is possible
 - or is absolutely sure that the given value is not possible.
- In this case, each expert estimate provides us with a set of possible values of the corresponding quantity.
- In most practical cases, this set is an interval $[\underline{x}, \overline{x}]$.

6. Non-Fuzzy Case (cont-d)

- In these terms, when we have estimates of two different experts, this means that:
 - based on the opinions of the first expert, we form a set S_1 of possible values;
 - also, based on the opinions of the second expert, we form a set S_2 of possible values.
- In general, different experts take into account different aspects of the situation.
- For example, the first expert may know the upper bound \overline{x} on the corresponding quantity.
- In this case, the set S_1 consists of all the numbers which are smaller than or equal to \overline{x} , i.e., $S_1 = (-\infty, \overline{x}]$.
- The second expert may know the lower bound \underline{x} , in which case $S_2 = [\underline{x}, \infty)$.

7. Non-Fuzzy Case (cont-d)

- A natural way to fuse the knowledge is to consider numbers which are possible according to both experts.
- In mathematical terms, we consider the intersection $S_1 \cap S_2$ of the two sets S_1 and S_2 .
- A problem occurs when this intersection is empty, i.e., when the opinions of two experts are inconsistent.
- This happens: experts are human and can thus make mistakes.
- In this case, an extreme option is to say that:
 - since experts are not consistent with each other,
 - this means that we do not trust what each of them says,
 - so we can as well ignore both opinions; the result of fusion is then the whole real line.

8. Non-Fuzzy Case (cont-d)

- A more reasonable option is:
 - to conclude that, yes, both experts cannot be true, but
 - we cannot conclude that both are wrong.
- They are experts after all, so it is reasonable to assume that one of them is right.
- In this case, the result of the fusion is the union $S_1 \cup S_2$ of the two sets.
- In other words, the fusion $S_1 f S_2$ of the sets S_1 and S_2 has the following form;
 - if $S_1 \cap S_2 \neq \emptyset$, then $S_1 f S_2 = S_1 \cap S_2$;
 - otherwise, if $S_1 \cap S_2 = \emptyset$, then $S_1 f S_2 = S_1 \cup S_2$.

9. Example

- Suppose that:
 - one expert says that the temperature is between 22 and 25, and
 - another one claims that it is between 18 and 21.
- In this case, the intersection of the corresponding intervals [22, 25] and [18, 21] is empty.
- This means that the experts cannot be both right.
- What we can conclude:
 - if we still believe that one of them is right
 - is that the temperature is either between 22 and 25 or between 18 and 21.

10. Need to Consider the Fuzzy Case

- In practice, experts are rarely absolutely confident about their opinions.
- Usually, they are only confident to a certain degree.
- As a result, to adequately describe expert knowledge, we need to describe:
 - for each number x,
 - the degree to which, according to this expert, the number x is possible.
- This is the *fuzzy logic* approach; in the computer:
 - "true" (= "absolutely certain") is usually represented as 1, and
 - "false" (= "absolutely certain this is false") is represented as 0.

11. Need to Consider the Fuzzy Case (cont-d)

- It is therefore reasonable to describe intermediate degrees of confidence by numbers between 0 and 1.
- Thus, to describe an expert's estimate, we need to have a function $\mu(x)$ that assigns:
 - to each value x of the corresponding quantity,
 - a number $\mu(x) \in [0,1]$ that describes to what extent the value x is possible.
- Such a function is known as a membership function, or, alternatively, a fuzzy set.
- From this viewpoint, to be able to fuse expert estimates, we need to be able to fuse fuzzy sets.
- A traditional approach to fusing fuzzy knowledge simply takes the intersection.

12. Need to Consider the Fuzzy Case (cont-d)

- The intersection is usually normalized, i.e., multiplied by a constant so that the maximum value is 1.
- However, this does not work if the expert opinions are inconsistent.
- We should therefore take into account that the expert opinions can be inconsistent.
- Another option is that they are consistent to a certain degree.
- How can take this into account?

13. In General, How Notions Are Generalized to the Fuzzy Case

- The usual way to generalize different notions to the fuzzy case is as follows.
- First, we describe the original notion in logical terms, by using "and", "or", and quantifiers:
 - "for all" (which is, in effect, infinite "and") and
 - "exists" (which is, in effect, infinite "or").
- Then, we replace each "and" operation with the fuzzy "and"-operation $f_{\&}(a,b)$ (also known as t-norm).
- We replace every "or"-operation with the fuzzy "or"-operation $f_{\vee}(a,b)$ (also known as t-conorm).
- In selecting the t-norms and t-conorms, we need to be careful, in the following sense.

14. How Notions Are Generalized (cont-d)

- If we have a universal quantifier i.e., an infinite "and", and
 - we use, e.g., a product t-norm $f_{\&}(a,b) = a \cdot b$,
 - then the product of infinitely many values smaller than 0 will be most probably simply 0.
- So, if we have a universal quantifier, the only reasinable t-norm is $f_{\&}(a,b) = \min(a,b)$.
- Similarly, if we have an existential quantifier i.e., an infinite "or" and
 - we use, e.g., $f_{\vee}(a, b) = a + b a \cdot b$,
 - then the result of applying this operation to infinitely many values > 0 will be 1.
- So, if we have an existential quantifier, the only reasonable t-conorm is $f_{\vee}(a,b) = \max(a,b)$.

Examples Fusing Expert . . . Example Need to Consider the . . . In General, How . . . How to Define Degree.. Resulting Definition of . . Discussion Home Page Title Page **>>** Page 15 of 28 Go Back Full Screen Close Quit

15. How to Define Degree of Consistency

- Let us use the above-described general approach to define the degree of consistency.
- In the non-fuzzy case, two expert opinions are consistent if:
 - there exists a value x for which
 - both the first expert and the second expert agree that x is possible.
- For each real number x representing a possible value of the quantity of interest:
 - let $\mu_1(x)$ denote the degree to which the first expert believes the value x to be possible, and
 - let $\mu_2(x)$ denote the degree to which the second experts believes the value x to be possible.

16. Degree of Consistency (cont-d)

• Then, for each value x, the degree to which both experts consider the value x to be possible is

$$f_{\&}(\mu_1(x),\mu_2(x)).$$

- In line with the above general scheme for generalizing notions into fuzzy:
 - the existential quantifier over x
 - is translated into maximum over x
 - which corresponds to the use of the maximum "or"-operation $f_{\vee}(a,b) = \max(a,b)$.
- Thus, we get the following formula for the degree $d(\mu_1, \mu_2)$ for which two membership functions are consistent:

$$d(\mu_1, \mu_2) = \max_{x} f_{\&}(\mu_1(x), \mu_2(x)).$$

17. Degree of Consistency (cont-d)

- Accordingly:
 - in line with a general description of negation in fuzzy logic,
 - the degree to which the expert opinions are *in*consistent can be computed as $1 d(\mu_1, \mu_2)$.

Examples Fusing Expert . . . Example Need to Consider the . . . In General, How . . . How to Define Degree . . Resulting Definition of . . . Discussion Home Page Title Page **>>** Page 18 of 28 Go Back Full Screen Close Quit

18. Resulting Definition of Fusion

- \bullet As we mentioned, in the non-fuzzy case, the value x belongs to the fused set if:
 - either the two sets describing expert opinions are consistent, and x belongs to their intersection,
 - or the two sets describing expert opinions are inconsistent, and x belongs to their union.
- Let us use the general methodology to generalize the above description to the fuzzy case.
- \bullet For each x:
 - we know the degree $d(\mu_1, \mu_2)$ to which the experts are consistent, and
 - we know the degree $f_{\&}(\mu_1(x), \mu_2(x))$ to which x belongs to the intersection.

• Thus, the degree to which the expert opinions are consistent and x belongs to the intersection is

$$f_{\&}(d(\mu_1, \mu_2), f_{\&}(\mu_1(x), \mu_2(x))) = f_{\&}(d(\mu_1, \mu_2), \mu_1(x), \mu_2(x)).$$

- Similarly, for each x:
 - we know the degree $1 d(\mu_1, \mu_2)$ to which the experts are inconsistent, and
 - we know the degree $f_{\vee}(\mu_1(x),\mu_2(x)) = \max(\mu_1(x),\mu_2(x))$ to which x belongs to the union.
- Thus, the degree to which the expert opinions are inconsistent and x belongs to the union is

$$f_{\&}(1-d(\mu_1,\mu_2),\max(\mu_1(x),\mu_2(x))).$$

Need to Fuse . . . Examples

Fusing Expert . . .

Example

Need to Consider the . . .

In General, How . . .

How to Define Degree . .

Resulting Definition of . .

Discussion

Title Page

Home Page

>>

Go Back

Full Screen

Close

Quit

20. Resulting Definition of Fusion (cont-d)

• To find the degree $\mu(x)$ to which the value x belongs to the fused set, we need to apply the "or"-operation:

$$\mu(x) = \max(d_1(x), d_2(x)), \text{ where}$$

$$d_1(x) \stackrel{\text{def}}{=} f_{\&}(d(\mu_1, \mu_2), \mu_1(x), \mu_2(x)),$$

$$d_2(x) \stackrel{\text{def}}{=} f_{\&}(1 - d(\mu_1, \mu_2), \max(\mu_1(x), \mu_2(x))), \text{ and}$$

$$d(\mu_1, \mu_2) = \max f_{\&}(\mu_1(x), \mu_2(x)).$$

Examples Fusing Expert . . . Example Need to Consider the . . . In General, How . . . How to Define Degree.. Resulting Definition of . . Discussion Home Page Title Page 44 **>>** Page 21 of 28 Go Back Full Screen Close Quit

21. Discussion

- We can see that this fused fuzzy set is not exactly "and", it is not exactly "or".
- It is a fuzzy combination of "and" and "or".
- When $f_{\&}(a,b) = \min(a,b)$, our formula for $\mu(x)$ can be simplified into the following:

 $\max(\min(\mu_1(x), \mu_2(x)), \min(1-d(\mu_1, \mu_2), \max(\mu_1(x), \mu_2(x)))).$

Examples Fusing Expert . . . Example Need to Consider the . . . In General, How . . . How to Define Degree.. Resulting Definition of . . Discussion Home Page Title Page 44 **>>** Page 22 of 28 Go Back Full Screen Close Quit

22. Example

- Let us consider a simple case when:
 - the "and"-operation is minimum, and
 - the membership functions are triangular functions of the same width.
- To make the computations even easier, let us select, as a starting point for measuring x:
 - the arithmetic average
 - between the most probable values corresponding to the two experts.
- Let us select the measuring unit so that the half-width of each membership function is 1.
- In this case, the triangular membership functions are described, for soem a > 0, by the formulas

$$\mu_1(x) = \max(0, 1-|x-a|) \text{ and } \mu_2(x) = \max(0, 1-|x+a|).$$

Examples Fusing Expert . . . Example Need to Consider the . . . In General, How . . . How to Define Degree . . Resulting Definition of . . Discussion Home Page Title Page **>>** Page 23 of 28 Go Back Full Screen Close Quit

- This value a is the half of the difference between:
 - the most probable value (a) according to the first expert and
 - the most probable value according to the second expert (-a):

$$a = \frac{a - (-a)}{2}.$$

- When $a \geq 1$, the two membership functions have no intersection at all, so $d(\mu_1, \mu_2) = 0$.
- Then, the fused set is simply their union $\max(\mu_1(x), \mu_2(x))$.
- It is a bi-modal set whose graph consists of the two original triangles.
- The more interesting case is when a < 1.
- In this case, the two sets have some degree of intersection.

Need to Fuse . . .

Examples
Fusing Expert . . .

Example

In General, How . . .

Need to Consider the . . .

How to Define Degree..

Resulting Definition of . .

Discussion

Home Page

Title Page

Page 24 of 28

Go Back

Full Screen

Close

Quit

- For such values a, the intersection $f_{\&}(\mu_1(x), \mu_2(x))$ is also a triangular function $\max(0, 1 a |x|)$.
- The maximum $d(\mu_1, \mu_2)$ of this function is attained when x = 0 and is equal to 1 a.
- Correspondingly, the degree to which the two expert opinions are inconsistent is equal to

$$1 - d(\mu_1, \mu_2) = 1 - (1 - a) = a.$$

- By applying our formula, we can now conclude the following.
- When $a \leq 0.5$, the fused expression is still a fuzzy number, i.e., $\mu(x)$ first increases and then decreases.

- $\mu(x)$ starts being non-zero at x = -1 a.
- Between the value -1 a and -1, it grows as $\mu(x) = x (-1 a) = 1 + a x$.
- Between the values x = -1 and x = -(1 2a), the fused function remains constant $\mu(x) = a$.
- Between x = -(1 2a) and x = 0, it grows as $\mu(x) = 1 a + x$, until it reaches the value 1 a.
- Then, for x from 0 to 1-2a, it decreases as $\mu(x) = 1-a-x$ until it reaches the value a for x=1-2a.
- Then, the value stays constant $\mu(x) = a$ until we reach x = 1.
- Finally, for x between 1 and 1+a, the values decreases as $\mu(x) = (1+a) x$.
- It reaches 0 for x = 1 + a and stays 0 after that.

Need to Fuse...

Examples

Fusing Expert . . .

In General, How . . .

Example

Need to Consider the . . .

How to Define Degree..

Resulting Definition of . .

Discussion

Home Page

Title Page

Page 26 of 28

Go Back

Full Screen

Close

Quit

- We can normalize the resulting function, by dividing it by its largest possible value 1 a.
- Then, the constant levels increase to $\frac{a}{1-a}$.
- When a > 0.5, we simply get the union cut-off at level 1 a, i.e., $\mu(x) = \min(1 a, \max(\mu_1(x), \mu_2(x)))$.

Examples Fusing Expert . . . Example Need to Consider the . . . In General, How . . . How to Define Degree.. Resulting Definition of . . Discussion Home Page Title Page **>>** Page 27 of 28 Go Back Full Screen Close Quit

27. Acknowledgments

This work was supported in part by the US National Science Foundation via grant HRD-1242122 (Cyber-ShARE).

