Why Kappa Regression?

Julio C. Urenda¹, Orsolya Csiszár^{2,3}, Gábor Csiszár⁴, József Dombi⁵, György Eigner³, Olga Kosheleva¹, and Vladik Kreinovich¹,

¹University of Texas at El Paso, USA ²University of Applied Sciences Esslingen, Germany ³Óbuda University, Budapest, Hungary ⁴University of Stuttgart, Germany ⁵University of Szeged, Hungary

E-mails: vladik@utep.edu, orsolya.csiszar@nik.uni-obuda.hu, gabor.csiszar@mp.imw.uni-stuttgart.de, dombi@inf.u-szeged.hu, eigner.gyorgy@nik.uni-obuda.hu, olgak@utep.edu, vladik@utep.edu

1. Empirical facts

• In many practical situations, probability distributions with the following cdf work well:

$$F(x) = \operatorname{Prob}(X \le x) = \frac{1}{1 + C \cdot \left(\frac{b - x}{x - a}\right)^{\lambda}}.$$

- Such distributions are known as *kappa-regression distributions*.
- Fuzzy processing with similar membership functions also works well: $\mu(x) = \frac{1}{1 + C \cdot \left(\frac{b-x}{x-a}\right)^{\lambda}}$.
- Often, other families of probability distributions e.g., Gaussian – work better.
- Still, kappas work very well. How can we explain this?

Empirical facts

A known limit case

Idea of invariance

What are the simplest..

How can we apply...

What probability...

What About the Fuzzy . .

Beyond linear...

General Case

Home Page

Page 2 of 29

Go Back

F # 6

Full Screen

Close

Close

Quit

2. A known limit case

• In the limit, kappa regressions become *logistic* distribution

$$F(x) = \frac{1}{1 + C \cdot \exp(-k \cdot x)}.$$

• So, let us first try to understand why this limit case has been very successful.

3. Idea of invariance

- Let us recall how real-life phenomena are described and explained in the first place.
- Modern science especially physics has been very successful.
- We can predict many events.
- But what is the general basis for all these predictions?
 - we observe that the Sun goes up day after day, and
 - we conclude that in the similar situations, the Sun will go up again.
- We observe, at different locations, that if you drop a pen, it will fall with the acceleration of 9.81 m/sec².
- So we conclude that in similar situations, it will fall down with the same acceleration.

4. Idea of invariance (cont-d)

- We observe, in many cases, that mechanical bodies follow Newton's laws.
- So we conclude that in the similar situations, the same laws will be observed.
- In all these cases, we conclude that:
 - when we change a situation to a similar one,
 - e.g., by moving to a different location on Earth or to a different day, etc.,
 - the processes will remain similar.
- The idea that physical properties don't change if we perform some transformations is called *invariance*.

5. Idea of invariance (cont-d)

- Invariances also called *symmetries* in physics are indeed one of the fundamental ideas of modern physics.
- Many new theories starting with the theory of quarks
 are proposed:
 - not by writing down differential equations,
 - but by describing the corresponding invariances.

6. What are the simplest invariances?

- Some invariances e.g., the ones used in quark theory are rather complicated.
- Let us start with the simplest possible invariances.
- These invariances are related to the fact that:
 - when we write equations,
 - we operate with numerical values of the physical quantities.
- To describe physical quantities by numbers, we need to select a measuring unit and a starting point.
- For example, we can measure time starting:
 - with Year 0 as in the commonly used calendar -
 - or with any other moment of time;
- After the French revolution, the new calendar started with the year of the revolution as the first year.

7. What are the simplest invariances (cont-d)

- We can also change a measuring unit e.g., count days or months instead of years.
- In general:
 - if you replace the original measuring unit with a new unit which is c times smaller,
 - then all numerical values are multiplied by c:

$$x \to c \cdot x$$
.

- E.g., if we replace meters with centimeters, all numerical values will be multiplied by 100.
- 2 m social distance will become $2 \cdot 100 = 200$ cm.
- By a *scaling*, we mean a transformation (function) $f(x) = c \cdot x$ for some c > 0.

8. What are the simplest invariances (cont-d)

- Similarly:
 - if we replace the original starting point with the one which is x_0 units earlier,
 - then all numerical values increase by x_0 :

$$x \to x + x_0$$
.

- By a *shift*, we mean a transformation $f(x) = x + x_0$ for some x_0 .
- In many physical situations, there is no preferred starting point.
- So, we expect that the processes remain similar:
 - if we change the starting point,
 - i.e., if we replace all numerical values x with shifted values $x + x_0$.

9. What are the simplest invariances (cont-d)

- Similarly, in many physical situations, there is no preferred measuring unit.
- So, we expect that the processes remain similar:
 - if we replace the measuring unit,
 - i.e., if we replace all numerical values x with rescaled values $c \cdot x$.

10. How can we apply these ideas to probability distributions?

- Of course:
 - if we change the units of one of the quantities,
 - then, to preserve the same equations, we need to accordingly change the units of related quantities.
- For example, let us start with the formula $d = v \cdot t$ that the distance is velocity times time.
- Let us change the unit for time from hours to seconds.
- Then, to preserve the formula, we need to corresponding change the units for velocity: e.g., from km/h to km/sec.
- In probability theory, there is a natural way to change probabilities: the Bayes formula.

11. Bayes formula

• If we have a new observation E, then the previous probability $P_0(H)$ of a hypothesis H changes to:

$$P(H | E) = \frac{P(E | H) \cdot P_0(H)}{P(E | H) \cdot P_0(H) + P(E | \neg H) \cdot P_0(\neg H)} = \frac{P(E | H) \cdot P_0(H)}{P(E | H) \cdot P_0(H) + P(E | \neg H) \cdot (1 - P_0(H))} = \frac{P_0(H)}{P_0(H) + r \cdot (1 - P_0(H))}.$$

• Here, we denoted $r \stackrel{\text{def}}{=} \frac{P(E \mid \neg H)}{P(E \mid H)}$.

12. Bayes formula (cont-d)

- So, a natural idea is to require that:
 - if we apply a reasonable transformation to x,
 - e.g., change the starting point or change the measuring unit,
 - then the probability distribution will change according to the Bayes formula.
- We say that cdfs F(x) and G(x) are equivalent if for some real number r, we have:

$$G(x) = \frac{F(x)}{F(x) + r \cdot (1 - F(x))}.$$

• This equivalence divides all possible cumulative distribution functions into equivalence classes.

13. Bayes formula (cont-d)

- It is reasonable to call an equivalence class f-invariant if this class does not change under a transformation f.
- This definition can be equivalently described in terms of the cdfs from the f-invariant equivalence class.
- We say that F(x) is f-invariant, if F(f(x)) and F(x) are equivalent, i.e., if for some r > 0, we have

$$F(f(x)) = \frac{F(x)}{F(x) + r \cdot (1 - F(x))}.$$

14. What probability distributions satisfy this invariance requirement?

- Result. For each cumulative distribution function F(x), the following two conditions are equivalent:
 - F(x) is invariant with respect to all shifts;
 - F(x) is a logistic distribution.
- The Bayes formula becomes simpler if we consider the odds $O \stackrel{\text{def}}{=} \frac{P}{1-P}$:

$$O' = \frac{P'}{1 - P'} = \frac{1}{r} \cdot \frac{P}{1 - P} = s \cdot O$$
, where we denoted $s \stackrel{\text{def}}{=} \frac{1}{r}$.

• In these terms, shift-invariance means

$$O(x + x_0) = s(x_0) \cdot O(x)$$
 for some s.

Empirical facts

A known limit case

Idea of invariance

What are the simplest . .

How can we apply...

What probability...

What About the Fuzzy.

Beyond linear...

General Case

Home Page

Title Page

Page 15 of 29

Go Back

Full Screen

Close

Quit

15. What probability distributions satisfy this invariance requirement (cont-d)

- Each cumulative distribution function F(x) is monotonic and thus, measurable.
- Thus, the odds function is also measurable.
- It is known that all measurable solutions of the above functional equation have the form $O(x) = c \cdot \exp(k \cdot x)$.
- So, for $P = \frac{1}{1 + \frac{1}{O}}$, we get the logistic distribution.

16. What About the Fuzzy Case?

- The Bayes formula is not applicable to membership functions.
- So, we need a different explanation.
- Let us recall that one of the possible ways to get membership degrees is to poll experts.
- If m out of n experts think that the given statement is true, we assign to it the degree of confidence m/n.
- For example:
 - we can say that a person of a certain age is young to a degree 0.7
 - if 70% of the experts consider this person young.

17. Resulting transformations

- For statements that require true expertise we ask top experts, of whose opinion we are most confident.
- ullet Suppose that out of n top experts, m thought that the given statement is true.
- Then we assign, to this statement, the degree of confidence $\mu = m/n$.
- The problem is that in many practical situations, there are very few top experts: the number n is small.
- In this case, we have a very limited number of possible degrees.
- For example, when n=5, we only have 6 possible values: 0, 1/5, 2/5, 3/5, 4/5, and 1.
- The only way to make a more meaningful distinction is to use a larger value of n, i.e., to ask more experts.

18. Resulting transformations (cont-d)

- However, in the presence of the top experts, other notso-top experts may be:
 - either silent,
 - or simply follow the opinion of their peers.
- If we ask n' more experts and the new experts are silent, then the new degree of confidence is

$$\mu' = m/(n+n').$$

- In terms of the original degree of confidence $\mu = m/n$, we have $\mu' = c \cdot \mu$, where $c \stackrel{\text{def}}{=} n/(n+n')$.
- What if the new experts follow the majority of top experts and if this majority confirms our statement.
- Then the new degree of confidence is

$$\mu' = (m + n')/(n + n').$$

Empirical facts

A known limit case

Idea of invariance

What are the simplest...

How can we apply...

What probability...

What About the Fuzzy . .

Beyond linear...

General Case

Home Page

Title Page

Page 19 of 29

Go Back

Full Screen

Close

Quit

19. Resulting transformations (cont-d)

- In terms of the original degree of confidence μ , we have $\mu' = c \cdot \mu + a$, where $a \stackrel{\text{def}}{=} n'/(n+n')$.
- In both cases, we have a linear transformation $\mu \to \mu'$.
- A similar linear transformation occurs if:
 - some of the new experts remain silent, and
 - some follow the majority of top experts.
- So, linear transformations make sense for fuzzy degrees as well.

20. Beyond linear transformations

- In principle, not all functions are linear.
- For example, the Bayes formula describes a non-linear transformation.
- Let us look for a general class of transformations w.r.t. which physical properties can be invariant.
- Clearly:
 - if the properties do not change when we apply a transformation x' = f(x),
 - and do not change if we then apply the transformation x'' = g(x'),
 - then going from x to x'' = g(x') = g(f(x)) also does not change the properties.
- Thus, the class of possible transformations must be closed under composition.

21. Beyond linear transformations (cont-d)

- Similarly:
 - if the physical properties do not change when we go from x to y = f(x),
 - then the transition back, from y to $x = f^{-1}(y)$, also preserves all physical properties.
- So, the class of possible transformation must contain the inverse transformation.
- In mathematical terms, this means that the class of all possible transformations much be a *group*.
- Also, we want this to be constructive, we want to be able to simulate such transformations on a computer.

22. Beyond linear transformations (cont-d)

- At any given moment of time, a computer can only store and use finitely many parameters; thus:
 - elements of the desired transformation group
 - must be uniquely determined by the values of finitely many parameters.
- In mathematical terms, this means that the corresponding group must be finite-dimensional.
- It is known that under reasonable conditions:
 - any finite-dimensional transformation group that contains all linear transformation
 - contains only fractional-linear transformations

$$f(x) = \frac{A + B \cdot x}{C + D \cdot x}.$$

• So, we will call them r-transformations (r for "reasonable").

23. Which reasonable transformations preserve the interval [0,1]?

- Possible degrees of confidence form the interval [0, 1].
- It is therefore reasonable to look for transformations that preserve this interval, i.e., map $[0,1] \rightarrow [0,1]$.
- Such transformations have the form

$$f(x) = \frac{x}{x + r \cdot (1 - x)}$$
 for some real number r.

• So, we say that the membership functions $\mu(x)$ and $\nu(x)$ are equivalent if for some real number r, we have:

$$\nu(x) = \frac{\mu(x)}{\mu(x) + r \cdot (1 - \mu(x))}.$$

24. Which reasonable transformations preserve the interval [0,1] (cont-d)

- We say that a membership function $\mu(x)$ is f-invariant if $\mu(f(x))$ and $\mu(x)$ are equivalent.
- For each membership function $\mu(x)$, the following two conditions are equivalent to each other:
 - $\mu(x)$ is invariant with respect to all shifts;
 - $\mu(x)$ is described by the formula

$$\mu(x) = \frac{1}{1 + C \cdot \exp(-k \cdot x)}.$$

25. Another Special Case

- So far, we considered invariance w.r.t. shifts.
- What if we require that the cdf be invariant with respect to changing the measuring unit $x \to c \cdot x$.
- For each cumulative distribution function F(x), the following two conditions are equivalent to each other:
 - -F(x) is invariant with respect to all scalings;
 - -F(x) is described by the formula

$$F(x) = \frac{1}{1 + C \cdot x^{-k}}.$$

26. General Case

- The general kappa-regression distribution is concentrated, with probability 1, on the interval (a, b).
- This means that in this case, we cannot apply shift-invariance since there is a natural starting value a.
- We cannot apply scale-invariance since there is a natural measuring unit, e.g., the difference b-a.
- If we want to use invariances, we need to use some more general transformations.
- We have shown that reasonable requirements lead to fractional-linear transformations.
- So, we get the following result.

27. General Case

- **Theorem.** Let a < b. For each cdf F(x), the following two conditions are equivalent to each other:
 - F(x) is invariant with respect to all r-transformations that preserve the interval [a, b];
 - F(x) is a kappa-regression distribution.
- A similar result holds for membership functions.
- So, we have explained the efficiency of kappa-regression distributions and membership functions.
- They are the only ones which satisfy the reasonable invariance conditions.

28. Acknowledgment

This work was supported in part by:

- the grant TUDFO/47138-1/2019-ITM from the Ministry of Technology and Innovation, Hungary
- the National Science Foundation grants 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI Includes), and
- by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478.

