Which Fuzzy Implication Operations Are Polynomial? A Theorem Proves That This Can Be Determined by a Finite Set of Inequalities

Sebastia Massanet^a, Olga Kosheleva^b, and Vladik Kreinovich^c

^aDepartment of Mathematics and Computer Science, University of Balearic Islands 07122 Palma, Balearic Islands, Spain, s.massanet@uib.es
^{b,c}Departments of ^bTeacher Education and ^cComputer Science University of Texas at El Paso, El Paso, Texas 79968, USA olgak@utep.edu, vladik@utep.edu

1. Need to approximate fuzzy operations

- Fuzzy operations should reflect the expert reasoning.
- The more accurately these operation reflect expert reasoning, the better we capture the expert knowledge.
- We should therefore be prepared to capture the actual human reasoning as accurately as possible whatever the reasoning will be.
- Technique for capturing all kinds of empirical dependence is well known in science.
- For example, in physics the usual way to capture such a dependence is based on the fact that many dependencies are analytical.
- So they can be expanded into an infinite Taylor series.
- For functions of one variable, we have

$$f(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots$$

2. Need to approximate fuzzy operations (cont-d)

• For functions of two variables, we have $f(x, y) = a_{00} + a_{10} \cdot x + a_{01} \cdot y + a_{20} \cdot x^2 + a_{11} \cdot x \cdot y + a_{02} \cdot y^2 + \dots$

- To get a good approximation, we keep only the few first terms in this expansion.
- In the first approximation, we only keep linear terms, i.e., approximate the desired function by a linear polynomial

$$f_1(x,y) = a_{00} + a_{01} \cdot x + a_{10} \cdot y.$$

• To get a more accurate approximation, we also keep quadratic terms, i.e., approximate the desired function by a quadratic polynomial

$$f_2(x,y) = a_{00} + a_{10} \cdot x + a_{01} \cdot y + a_{20} \cdot x^2 + a_{11} \cdot x \cdot y + a_{02} \cdot y^2.$$

• To get an even more accurate approximation, we can add cubic terms, i.e., approximate the desired function by a cubic polynomial, etc.

3. Which of these polynomial functions are fuzzy operations: a challenge

- We want an operation that satisfies the corresponding properties.
- E.g., we want an "and"-operation to be commutative and associative.
- So, when we try to match the empirical data about these operations coming from experts:
 - we should not consider all possible polynomial functions,
 - we should only consider functions that satisfy the corresponding properties.

• So:

- among all the tuples coefficients a_i of the corresponding polynomials for which the resulting polynomial is a fuzzy operation,
- we need to select the tuple that best fits the available data.
- The problem is that the condition "is a fuzzy operation" is very complicated.

4. Which of these polynomial functions are fuzzy operations: a challenge (cont-d)

- It means that some equality should be satisfied for all possible values x and y (or even x, y, and z).
- Since there are infinitely many possible values x and y, we thus have infinitely many constraints that need to be satisfied.
- There exist numerical (and even analytical) methods for optimizing a function under a finite number of constraints.
- However, there are, in general, no available methods for optimizing a function under infinitely many constraints.
- An ideal solution to this problem would be to translate:
 - the complex constraint describing that a polynomial function is the corresponding fuzzy operation,
 - into a finite sequence of inequalities.

5. What is known: a brief (incomplete) overview

- Such a translation into a finite set of inequalities is known for several operations and for several degrees of the corresponding polynomial.
- For example, for polynomial degrees up to order 4, such a translation is known for describing:
 - whether a polynomial function is a fuzzy implication, and
 - whether it satisfies some additional properties.
- Implication operation is defined as a function f(x,y) for which f(0,0) = f(1,1) = 1, f(1,0) = 0, and for which the following holds:

$$\forall x \, \forall y \, \forall z \, (x \le y \Rightarrow f(x, z) \ge f(y, z)) \text{ and}$$

 $\forall x \, \forall y \, \forall z \, (y \le z \Rightarrow f(x, y) \ge f(x, z)).$

6. What is known and what we do

• Finite sets of inequalities are also described for each of the following additional properties: $\forall y \, (f(1,y)=y); \, \forall x \, (f(x,x)=1);$

$$\forall x \, \forall y \, \forall z \, (f(x, f(y, z)) = f(y, f(x, z)); \quad \forall x \, \forall y \, (x \le y \Leftrightarrow f(x, y) = 1);$$
$$\forall x \, \forall y \, (f(x, f(x, y)) = f(x, y)).$$

- What is *not* clear is which properties of fuzzy operations can be translated into an equivalent finite set of inequalities.
- We prove that a translation into an equivalent finite set of inequalities is always possible.
- We also provide an algorithm for this translation.
- Caution: the algorithm is not always practically useful: in some cases, it requires double exponential time.

7. Definition

- Let c_1, \ldots, c_m be symbols for real-valued constants; let n_1, \ldots, n_k be positive integers.
- Let f_1, \ldots, f_k be symbols of functions, so that each f_i is a function of n_i real variables. Let $x, x_1, \ldots, y, z, \ldots$ be real-valued variables.
- A term is defined as follows:
 - every symbol c_i and evert variable x_i is a term;
 - if t_1, \ldots, t_{n_i} are terms, then $f_i(t_1, \ldots, t_{n_i})$ is a term.
- A formula is defined as follows:
 - if t and t' are terms, then t = t', t < t', t > t', $t \le t'$, and $t \ne t'$ are formulas;
 - if F and G are formulas, then F & G, $F \lor G$, $F \Rightarrow G$, $F \Leftrightarrow G$, and $\neg F$ are formulas;
 - if F is a formula, then $\forall x F$ and $\exists x F$ are formulas.
- A formula is *closed* is every variable is covered by some quantifier.

8. Definition (cont-d)

- Examples: f(x, f(y, z)) and f(t(x, y), z) are terms, and all the above-described properties are closed formulas.
- By a polynomial equality, we mean an expression of the type P = Q, where P and Q are polynomials.
- A polynomial inequality is an expression of the type P < Q, P > Q, $P \le Q$, $P \ge Q$, or $P \ne Q$, where P and Q are polynomials.
- By a system of polynomial equalities and inequalities, we mean a finite set of polynomial equalities and inequalities.
- We say that a tuple *satisfies* this system if it satisfies all equalities and inequalities from this system.
- By a set of systems of polynomial equalities and inequalities, we mean a finite set of systems of polynomial equalities and inequalities.
- We say that a tuple *satisfies* this set if it satisfies one of the systems from this set.

9. Definition (cont-d)

• Example: One of the conditions from the 2022 paper has the form

If
$$\alpha < 0$$
 and $-2\alpha \le \beta - \delta \le -4\alpha$, then $(\beta - \delta)^2 + 2\alpha \cdot (\delta + \varepsilon + 1) \le 0$.

- In general, implication "if A then B" means that either B is true or A is false. So:
 - either we have $(\beta \delta)^2 + 2\alpha \cdot (\delta + \varepsilon + 1) \le 0$
 - or the following condition is false:

"
$$\alpha < 0$$
 and $-2\alpha \le \beta - \delta$ and $\beta - \delta \le -4\alpha$ "

- In general, the fact that the conjunction "A and B and C" is false means that either A is false, or B is false, or C is false.
- In our case, either $\alpha \geq 0$ or $-2\alpha > \beta \delta$ or $\beta \delta > -4\alpha$.

10. Definition (cont-d)

- Thus, the above condition means that the tuple $(\alpha, \beta, ...)$ satisfies the following set of four single-inequality systems:
 - $(\beta \delta)^2 + 2\alpha \cdot (\delta + \varepsilon + 1) \le 0$;
 - $\alpha \geq 0$;
 - $-2\alpha > \beta \delta$;
 - $\beta \delta > -4\alpha$.
- Similarly, all other known conditions can be described in these terms.
- Let x_1, x_2, \ldots be variables.
- A monomial is an expression of the type $x_{i_1}^{v_1} \cdot \ldots \cdot x_{i_m}^{v_m}$, where $i_1 < \ldots < i_m$ and v_i are positive integers.
- The sum $v_1 + \ldots + v_m$ is called the *degree* of the monomial.

11. Definitions and main result

- By a polynomial of degree d, we means an expression of the type $a_1 \cdot M_1 + \ldots + a_N \cdot M_N$, where M_i are of degree d.
- Let d_1, \ldots, d_k be positive integers. Then:
- For each closed formula F, this formula, when limited to the case when each function f_i is a polynomial of degree d_i :
 - is equivalent to a set of systems of polynomial inequalities
 - in terms of constants c_i and coefficients of the polynomials f_i .
- There exists an algorithm that:
 - given a closed formula F limited to the case when each function f_i is a polynomial of degree d_i ,
 - returns the equivalent set of systems of polynomial equalities and inequalities.
- Same holds for rational and algebraic functions f_i of degree d_i .

12. Proof

- Our proof is based on the Tarski-Seidenberg theorem about the socalled first order theory of real numbers.
- We will denote this theory by T, after Tarski.
- In this theory T, we start with real-valued constants x_i and real-valued variables x_j .
- T-terms are polynomials in terms of c_i and x_j .
- Elementary T-formulas are equalities and inequalities between terms.
- A general T-formula is a formula obtained from elementary T-formulas by using:
 - logical connectives &, \vee , etc., and
 - quantifiers $\forall x$ and $\exists x$ over real numbers.

13. Proof (cont-d)

- The Tarski-Seidenberg theorem states that:
 - each closed T-formula F is equivalent to a set of systems of polynomial equalities and inequalities in terms of constants c_i ; and
 - there exists an algorithm that, given a closed T-formula F, returns the equivalent set of systems of polynomial inequalities.
- \bullet To apply this theorem to our case, we need to represent our formulas in terms of the theory T.
- By comparing our definition of a formula with the definition of the T-formula, one can see that the only difference is:
 - between terms as defined above
 - and T-terms.
- So, the only thing we need for such a translation is to transform each term into the *T*-term form, i.e., into a polynomial.

14. Proof (cont-d)

- This can be done by induction over the inductive definition of a term:
- Constants and variables are already polynomials.
- If the terms t_1, \ldots, t_{n_i} are polynomials, and the function f_i is a polynomial, then the expression $f_i(t_1, \ldots, t_{n_i})$ is also a polynomial.
- For example, if $f(x,y) = a_0 + a_1 \cdot x + a_1 \cdot y$, then

$$f(x, f(x, y)) = a_0 + a_1 \cdot x + a_2 \cdot (a_0 + a_1 \cdot x + a_2 \cdot y)) =$$

$$a_0 + a_1 \cdot x + a_2 \cdot x + a_2 \cdot a_0 + a_2 \cdot a_1 \cdot x + a_2 \cdot a_2 \cdot y.$$

• The proposition is thus proven.