Logical Inference Inevitably Appears: Fuzzy-Based Explanation

Julio Urenda¹, Vladik Kreinovich², Olga Kosheleva³, and Orsolya Csiszár⁴

^{1,2}Departments of ¹Mathematics, ²Computer Science and ³Teacher Education University of Texas at El Paso, El Paso, Texas 79968, USA jcurenda@utep.edu, vladik@utep.edu, olgak@utep.edu
Aalen University of Applied Sciences, Germany, orsolya.csiszar@hs-aalen.de

- 1. Main question: logical inference historically appeared, but was it inevitable?
 - Many thousands years ago, our primitive ancestors did not have the ability to reason logically and to perform logical inference.
 - This ability appeared later.
 - A natural question is:
 - was this appearance inevitable,
 - or was this a lucky incident that could have been missed?
 - In this talk, we use fuzzy techniques to provide a possible answer to this question.
 - Our answer is: yes, the appearance of logical inference in inevitable.

2. Let us formulate this question in precise terms

- Nowadays, we know the statements which are absolutely true, namely, the statements of abstract mathematics.
- However, these statement already presuppose the ability to reason logically.
- We are interested in analyzing how logical reasoning appeared in the first place.
- So, we need to ignore mathematical statements and concentrate on statements about the real world.
- In this case:
 - if we go beyond observed facts which are, of course, clearly true.
 - such statements always come with some degree of certainty.

3. Let us formulate this question in precise terms (cont-d)

- Indeed, we may observe some phenomenon many times, but it does not mean that we are 100% sure that this will always be true:
 - Every day, we see the sun rising in the morning, but one day, there is a solstice, and the sun is not visible.
 - Every day eating a certain plant is OK, but one day, a fungus attacks this plant, making it poisonous for humans, etc.
- So, we need to deal with statements that have some degree of uncertainty.

4. We can combine these statements into complex ones

- Once we have statements S_1, S_2, \ldots , we can combine them into logical combinations.
- For example, we can consider statements $S_1 \& S_2$, $S_3 \lor \neg S_4$, etc.
- One of the main ideas behind fuzzy logic is that:
 - if we know the degrees of certainty d_i in statements S_i , then we can estimate our degree of certainty in a combined statement
 - by using the corresponding "and"-, "or"-, and "not"-operations $f_{\&}(a,b), f_{\lor}(a,b),$ and $f_{\neg}(a,b).$
- For historical reasons:
 - "and"-operations are usually known as t-norms, while
 - "or"-operations are usually known as t-conorms.

5. We can combine these statements into complex ones

- Let us consider the set *D* of degrees of certainty of all possible combined statements.
- This set must be closed under these operations, i.e.,
 - $\text{ if } a \in D \text{ and } b \in D,$
 - then we must have $f_{\&}(a,b) \in D$, $f_{\lor}(a,b) \in D$, and $f_{\neg}(a) \in D$.

- 6. Let us restrict ourselves to intuitively reasonable "and"operation
 - For non-mathematical statements, a combined statement "A and B" is, in general, stronger than each of the two statements A and B.
 - So, it makes sense to consider "and"-operations that are consistent with this intuitive idea, i.e., for which:
 - wherever a < 1 and b < 1,
 - we have $f_{\&}(a,b) < a$ and $f_{\&}(a,b) < b$.

7. A person – or even a group – rarely deals with all possible degrees of certainty

• Even now, it is rare that the same group of people deal with statements of all kinds degree of certainty.

• For example:

- mathematicians usually deal only with absolutely correct statements,
- physicists usually deal with statements that are correct on the physical level i.e., have some uncertainty in them,
- biologists usually deal with statement that have even less degree of certainty,
- philosophers unless they follow a formal approach usually deal with statement with even less certainty, etc.
- At each moment of time, there are several such groups of people.

- 8. A person or even a group rarely deals with all possible degrees of certainty (cont-d)
 - Let us denote the number of such groups by n.
 - Let us denote by D_1, \ldots, D_n the sets of degrees of certainty corresponding to each of these groups.

9. What does appearance of logical inference mean in these terms

- In general, logical inference means that the same person or at least the same group of people– deals both:
 - with some statements, e.g., S_1 and S_2 , and
 - with their logical combination, e.g., $S_1 \& S_2$.
- In these terms, the appearance of logical inference means that:
 - on some level,
 - some logical combination of statement from this level also belongs to this same level.
- Now, we are ready to formulate our result in precise terms.

10. Comment

- We want to maintain the greatest possible degree of generality.
- So, we will use the weakest possible assumptions as long as we can get a proof.
- For example:
 - we will not assume that the degrees of certainty are numbers from the interval [0, 1];
 - for example, we allow interval-values degrees of certainty, and
 - we will not assume that the "and"-operation is commutative.

11. Definitions and the main result

- By logical development, we mean the tuple $\langle D, f_{\&}, f_{\lor}, f_{\neg}, D_1, \dots, D_n \rangle$, where:
 - -D is a partially ordered set that contains the largest element 1 and also contains at least one element different from 1;
 - elements of the set D will be called degrees of certainty;
 - $-f_{\&}: D \times D \to D$ is an associative operation on D for which $f_{\&}(a,b) < a$ and $f_{\&}(a,b) < b$ whenever a < 1 and b < 1;
 - $-f_{\vee}: D \times D \to D$ and $f_{\neg}: D \to D$ are operations on D; and
 - $-D_i$ are subsets of D for which $\cup D_i = D$.
- We say that a value $d \in D$ is a logical combination of the values $d_1, \ldots, d_m \in D$ if d can be obtained from d_i by using operations

$$f_{\&}(a,b), f_{\lor}(a,b), \text{ and } f_{\neg}(a,b).$$

• For example, we may have $d = f_{\&}(d_1, d_2)$, or $d = f_{\lor}(d_3, f_{\lnot}(d_4))$, etc.

12. Definitions and the main result (cont-d)

- We say that a logical development contains logical reasoning if one of the sets D_i contains both:
 - some values d_1, \ldots, d_m , and
 - a value d which is their logical combination.
- Proposition. Every logical development contains logical reasoning.

13. Discussion

- This result means that:
 - as we consider more and more statements, eventually, there will be the case
 - when some group will be dealing both with some statements and with their logical combination.
- In other words, logical inference will indeed inevitably appear.
- The above proposition promised the existence of *some* logical combination.
- We will actually prove a more specific result: that on every logical development, there is a group D_i that contains both:
 - some elements d and d', and
 - their "and"-combination $f_{\&}(d, d')$.

14. Proof

- By definition, the set D contains a degree d_1 which is smaller than 1.
- Let us consider, for each natural number k > 1, the degree d_k that is obtained by applying k times the "and"-operation $f_{\&}$ to d_1 :

$$d_2 = f_{\&}(d_1, d_1), \quad d_3 = f_{\&}(d_2, d_1) = f_{\&}(f_{\&}(d_1, d_1), d_1),$$
$$d_4 = f_{\&}(d_3, d_1) = f_{\&}(f_{\&}(f_{\&}(d_1, d_1), d_1), d_1),$$
and, in general, $d_{k+1} = f_{\&}(d_k, d_1).$

- By associativity, we can conclude that for all possible value k and ℓ , we have $f_{\&}(d_k, d_{\ell}) = d_{k+\ell}$.
- We have $f_{\&}(a,b) < a$ and $f_{\&}(a,b) < b$ whenever a < 1 and b < 1.
- So, we can prove, by induction, that the degrees d_k form a strictly decreasing sequence:

$$1 > d_1 > d_2 > \ldots > d_k > d_{k+1} > \ldots$$

• This implies, in particular, that all the values d_k are different.

15. Proof (cont-d)

- Since $\cup D_i = D$, for each k, the degree d_k belongs to one of the groups D_i .
- Let N_i denote the set of all the indices k for which $d_k \in D_i$.
- Then, we have $N = \bigcup N_i$.
- Now, we can use Schur's theorem, according to which:
 - every time we divide the set of all natural numbers into finitely many subsets N_i ,
 - one of these subsets let us denote it by N_j contains integers k and ℓ for which the sum $k + \ell$ is also contained in N_j .
- Strictly speaking, Schur's theorem requires that we have a partition.
- The sets N_i do not necessarily form a partition some of them may have a non-empty intersection.

16. Proof (cont-d)

- However, this problem is easy to overcome if:
 - instead of the original sets N_1 , N_2 , etc.,
 - we consider sets $N'_1 = N_1, N'_2 = N_2 N_1,$

$$N_3' = N_3 - (N_1 \cup N_2)$$
, and, in general, $N_i' = N_i - (N_1 \cup ... \cup N_{i-1})$.

- Then, the sets N'_i form a partition.
- Thus, by Schur's Theorem, there exists a set N'_j that contains two numbers k, ℓ , and their sum $k + \ell$.
- Since $N'_j \subseteq N_j$, the original set N_j also contains these three numbers.
- By definition of the sets N_j , the fact that k, ℓ , and $k + \ell$ all belong to N_j means that $d_k \in D_j$, $d_\ell \in N_j$, and $d_{k+\ell} \in D_j$.
- This implies that $f_{\&}(d_k, d_\ell) \in D_j$.
- The proposition is thus proven.

17. Discussion

- The above proposition says that for every n:
 - if we continuously add degree of certainty so that eventually all degrees will be added,
 - then, at some stage, we will reach a point at which logical reasoning emerges.
- In this result, the point at which logical reasoning emerges may depend on the specific division of the set *D* into groups.
- However, there exists a stronger version of Schur's theorem according to which, for each n, there exists a number N(n) for which:
 - if we divide all the natural numbers from 1 to N(n) into n groups N_1, \ldots, N_n ,
 - then one of these groups N_j contains some values k and ℓ for which $k + \ell \in N_j$.

18. Discussion (cont-d)

- In our terms, this means that:
 - if we only consider degrees $d_1, \ldots, d_{N(n)}$,
 - then among these degrees, one of the groups D_j will contain elements d_k , d_ℓ , and $d_{k+\ell} = f_{\&}(d_k, d_\ell)$.

19. A slightly stronger result

- Another generalization of the original Schur's theorem is Folkman's theorem, according to which:
 - for each division of the set of natural numbers N into a finite number of subsets N_i , and for each m > 1,
 - there exists a subset N_j and m elements from this subset for which the sum of any number of them is still in N_j .
- In our terms, this means that:
 - not only we have two degrees $d_k, d_\ell \in D_j$ for which $f_{\&}(d_k, d_\ell) \in D_j$, but
 - we also have m elements $d_{k_1}, \ldots, d_{k_m} \in D_j$ for which any "and"-combination $f_{\&}(d_{k_{j(1)}}, d_{k_{j(2)}}, \ldots)$ also belongs to D_j .

20. A slightly stronger result (cont-d)

- In other words:
 - not only the simplest form of logical inference eventually appear, but also
 - more and more sophisticated versions of logical reasoning eventually appear.

21. Acknowledgments

This work was supported in part by:

- National Science Foundation grants 1623190, HRD-1834620, HRD-2034030, and EAR-2225395;
- AT&T Fellowship in Information Technology;
- program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478, and
- a grant from the Hungarian National Research, Development and Innovation Office (NRDI).

22. References about Schur's theorem

- W. R. Bloom, R. J. Gardner, A. Hales, J. Spencer, T. Tao, and B. Weiss, "Robert Israel 'Bob' Jewett (1937–2022)", *Notices of the American Mathematical Society*, 2023, Vol. 70, No. 5, pp. 772–781.
- R. L. Graham, B. L. Rotschild, and J. H. Spencer, *Ramsey Theory*, Wiley, Nee York, 1980.
- R. Rado, "Some partition theorems", In: Combinatorial Theory and Its Applications, Proceedings of the III Colloquium, Balatonfüred, 1969, North-Holland, Amsterdam, 1969, pp. 929–936.
- J. H. Sanders, A Generalization of Schur's Theorem, PhD Dissertation, Yale University, 1968.